Между тем обезопасить свое жилище и себя от столь непредсказуемого природного явления вполне реально - достаточно приобрести специальную инженерную систему и грамотно ее установить. И тогда никакие грозы будут не страшны.

Одна из возможных причин невнимания наших соотечественников к данному вопросу заключается в том, что строительные нормы и правила не считают обязательной зданий высотой менее 30м. Кроме того, многие люди привыкли надеяться на авось, убеждая себя, что вероятность попадания электрического разряда в их загородный дом практически равна нулю. Тем не менее, молния способна нанести очень серьезный урон, даже если она ударит в нескольких десятках метров от жилища. Помимо серьезной опасности для здоровья хозяев это пожар в жилых и технических помещениях, выход из строя дорогостоящих компьютеров, систем видеонаблюдения, инженерных коммуникаций и пр.

Поэтому наиболее продвинутые дачники и владельцы коттеджей предпочитают не рисковать и устанавливают защитную систему - внешнюю (чтобы уберечь здание от удара молнии) или внутреннюю (дабы обезопасить помещения дома от вторичных последствий электрического разряда). Внешняя защита, в свою очередь, делится на классическую и активную. Каждая разновидность имеет свои особенности.

Классическая система защиты от молнии

Другие названия классической внешней системы молниезащиты, открытой еще в XVIII веке американским государственным деятелем Бенджамином Франклином, - пассивная и механическая. Она состоит из трех связанных между собой элементов: молниеприемника, токоотвода и заземлителя.

Молниеприемник (молниеотвод, громоотвод), принимающий на себя электрический удар, делают в виде троса, сетки, набрасываемой на здание, но чаще всего - в виде стального штыря диаметром примерно 12мм и длиной 0,2-1,5м. Его устанавливают на специальные изолирующие подпорки и крепят к самой высокой точке кровли.

К молниеприемнику приваривают токоотвод (спуск) - проводник из круглой или полосовой стали с антикоррозийным цинковым покрытием. Соединение должно быть прочным и надежным, способным выдерживать ток очень большой силы - примерно 200 кА. Затем токоотвод спускают с кровли, присоединяя к стене здания специальными металлическими скобами.

Второй его конец крепко сваривают с заземлителем - металлическим прутком, отрезком профиля, листом, трубой или целой системой уголков, прутков и швеллеров, которые зарыты в землю на глубину 2-3 м и гасят электрический разряд. Токоотвод лучше всего прокладывать по задней стене здания, а заземлитель - закапывать подальше от фундамента дома и надворных построек.

Главные достоинства классического варианта молниезащиты - надежность и демократичная цена, посильная для большинства владельцев загородной недвижимости. Недостатком является не слишком привлекательный внешний вид: стальная арматура плохо вписывается в архитектурный облик здания.

Внешняя активная система молниезащиты

Сравнительно новая для нашей страны система активной внешней молниезащиты уже получила признание специалистов и привлекла внимание потребителей. От классической она отличается большей широтой охвата, обусловленной иным принципом действия громоотвода. Этот элемент не бездействует, ожидая прямого попадания молнии, а постоянно работает - ионизирует воздушное пространство вокруг себя, формируя тем самым обширную область активной защиты. В результате грозовой электрический разряд, возникший в любом месте данной зоны, обязательно притянется к антенне-приемнику на крыше, пройдет по токоотводу и безопасно заземлится.

Плюсы: подобные системы способны защищать от молний здания значительной площади, характеризуются высокой надежностью, долговечностью, экологичностью. Кроме того, их молниеотводы компактны и не портят внешнего вида постройки. Но у активных устройств есть один существенный минус - высокая цена. Поэтому их установку могут позволить себе не все.

Системы внутренней молниезащиты коттеджа

Не менее важно позаботиться о монтаже системы внутренней молниезащиты коттеджа или дачи - это оборудование оберегает домашнее имущество от вторичных проявлений грозы: опасных воздействий электромагнитного поля и перепадов напряжения в электрической сети, способных серьезно повредить провода, инженерные коммуникации здания и современную технику (компьютеры, аудио- и видеопроигрыватели, телевизионные приемники, системы видеонаблюдения, отопления и кондиционирования).

В состав подобных систем входят ограничители перенапряжений, или грозовые разрядники, устанавливаемые в доме на специальном вводно-распределительном щите. Их основа - полупроводниковые резисторы, которые изменяют свое сопротивление в зависимости от приложенного к ним напряжения и при его скачке в момент попадания молнии полностью выгорают (после чего их просто заменяют на новые). Кроме одноразовых существуют и более дорогие многоразовые ограничители, самовосстанавливающиеся после разряда.

К элементам внутренней системы относят также устройства защиты от импульсных перенапряжений (УЗИП). Они предохраняют дорогостоящие домашние приборы от разрушительного действия наведенного напряжения, вызванного грозой.

Кроме того, внутренняя молниезащита позволяет выравнивать потенциалы отдельных потребителей электроэнергии. Для этого все токоприемники подсоединяют к одной заземляющей шине, иначе наведенное напряжение само будет стремиться проделать то же самое, но с необратимыми для бытовой техники последствиями.

Ваш выбор

Сегодня на отечественном рынке большой выбор самых разных молниезащитных систем. Как же понять, какая система оптимальна для конкретной дачи или коттеджа?

Во-первых, следует исходить из местоположения здания и окружающих природных условий. Если дом, например, стоит в лесу, в низине, куда молния попадает редко, вполне можно обойтись упрощенным вариантом защиты - допустим, установить громоотвод на самое высокое дерево, растущее рядом. Оно и примет на себя удар во время грозы, а токоотвод с заземлителем сведут на нет вероятность возникновения пожара. Если же строение находится на открытой возвышенной местности, то экономить на молниезащите нельзя - есть смысл установить и внутреннюю, и внешнюю (лучше активную) системы.

Во-вторых, надо обязательно проконсультироваться с профессионалами и выслушать все их рекомендации. Ведь установка молниезащитной системы - весьма трудоемкая и ответственная работа, требующая предварительных расчетов и проектирования. Если вы возьметесь за дело самостоятельно, без должных знаний, смонтированное оборудование не только не защитит дом во время грозы, но и станет потенциальным источником опасности. Подрядчиков для выполнения работ лучше всего выбирать по совету знакомых или ориентироваться на стаж компании, рекомендации ее клиентов (которые можно найти в Интернете) и технический уровень оборудования, предлагаемого организацией. Любая уважающая себя компания перед началом монтажа разрабатывает серьезный проект молниезащиты. Если же установка выполняется на глазок, без предварительных расчетов, от услуг подобной фирмы имеет смысл отказаться.

Грозы постоянно гремят над землей, летом чаще, зимой почти никогда. Хотя по статистике, гибель от удара молнии случается очень редко, никогда не следует недооценивать эту опасность. В горах грозы возникают чаще, чем на равнинах.
Наиболее часто молнии попадают в отдельно стоящие и выступающие предметы, поэтому нельзя укрываться в грозу возле одиноко стоящих деревьев, скальных отрогов и других высоких предметов на местности (геодезические знаки, вершина открытого холма). От них нужно отойти метров на 15-20.

В деревья разных пород молнии попадают с различной частотой:

Во время грозы опасно находиться в воде или поблизости от нее, ставить палатку у самой воды тоже нельзя, т.к. молнии часто бьют в речные берега. Наиболее безопасно использовать для убежища: сухие равнины, ложбины между холмами. Прямое поражение молнией приводит к смертельному исходу. Но, помимо этого, атмосферное электричество может принести немало других неприятностей.

Электромагнитная индукция — происходит в тех случаях, когда основной поток электричества проходит на удалении до 1 метра от человека, в его теле, как и любом проводнике, возникают индукционные токи Фуко — это также опасно, как и прямое попадание.

Электростатическая индукция — несильное покалывание на подошвах или ладонях, т.е. в точках соприкосновения тела со склоном – само по себе это неопасно, но может напугать неопытного путешественника.

Эффект короны (огонь святого Эльма) — потенциала грозы недостаточно для разряда, тогда может начаться медленное стекание заряда с выступающих предметов (острых форм поверхности). Возникает легкое потрескивание, в темноте видны голубые искорки (свечение), небольшое покалывание на кончике носа, ушах и пальцах рук. При отсутствии головного убора волосы электризуются, поднимаются и потрескивают, металлические детали ледоруба, поднятого вверх, также потрескивают и светятся. Такое явление не представляет опасности, но всё же является «последним» предупреждением о надвигающейся грозе и напоминанием о необходимости спуска вниз с выступающих форм рельефа.

Помните, что попытки определения степени электризации воздуха с помощью поднятого ледоруба или другого железного предмета, может окончиться летальным исходом.

Токи земли

Электрический заряд, попадая на землю, распространяется как по её поверхности, так и в ее толще по пути наименьшего сопротивления. При грозе необходимо спуститься с возвышенных форм рельефа на равнину. Нельзя прятаться в нишах скал, небольших ямках или впадинах на склоне. Не следует располагаться у входа в пещеру. Это все может привести к поражениям токами земли.

В условиях среднегорья или нахождения в зоне леса нельзя располагаться в непосредственной близости от костра. Проводимость сильно нагретого воздуха резко возрастает, потому что столб горячего воздуха (хорошего проводника тока) часто превышает высоту окружающих деревьев — способствует разряду молнии именно в костер, а не в дерево.

Одиночное дерево может служить защитой от молнии, но располагаться нужно не ближе 1,5 м от ствола.

Водоносные слои и глинистые почвы — опасны из-за поражения токами земли. Лучше найти песчаную почву, каменистую осыпь или морену.

  • В грозу нужно сесть на корточки, согнуться, обхватить колени руками или сесть на поверхность склона, колени подтянуть к груди и обхватить их руками. Голова в обоих случаях касается колен, которые нужно обхватить руками.
  • Ступни ног вместе. Положение при котором голова, грудь или спина служат точками контакта со склоном — является недопустимым.

Предсказание погоды

Чаще всего гроза случается во второй половине дня. Поэтому особо опасные горные хребты следует проходить рано утром.

Услышав вдали раскаты грома, периодически контролируйте расстояние до грозы. Для этого необходимо измерить, сколько секунд прошло от вспышки молнии до раската грома. Разделите полученное число на 3 и узнаете расстояние до грозы (в километрах).

Если гроза приближается, то не стоит дожидаться момента, когда молнии начнут бить в ста метрах от вас. Лучше заранее выполнить следующие рекомендации :

Меры предосторожности во время грозы

  1. Уйти с открытого места. Если вы на вершине горы или на горном хребте, то нужно как можно скорее уйти с высоты вниз.
  2. Полностью выключить мобильные телефоны, рации и прочие «активные» электроприборы. Для большей надежности рекомендуют извлечь из них аккумуляторы.
  3. Выбрать место для укрытия. Гроза редко длится больше часа, но и за то время можно основательно промокнуть и замерзнуть. Поэтому желательно найти скальный навес, глубокую щель, пещеру или просто натянуть тент (поставить палатку) в сухой ложбине или карстовой воронке.
  4. Пещера станет укрытием, а не могилой только в том случае, если в ней достаточно места, чтобы сидеть не ближе 1 метра к любой из стенок, и не ближе 3 метров к потолку. Нельзя стоять у входа — бегущий сверху разряд может использовать вас как перемычку.
  5. Есть возможность использовать высокую (не менее 10 м) отдельно стоящую скалу, как громоотвод. Такая скала защитит от прямого удара, однако сохраняется возможность поражения через влажную почву. Поэтому нужно максимально изолироваться от земли. Опять же, сидеть нужно не ближе 1 метра от скалы (но и не дальше, чем на расстоянии равном высоте скалы).
  6. Если гроза настигла вас в лесу, то нужно выбрать участок с более-менее одинаковыми по высоте деревьями и стать между деревьями (а не под ними). Стоит держаться подальше от дубов (их особенно часто поражает молния).
  7. Выбирая место для убежища, крайне важно избежать соседства с любой влагой. Озеро, ручей, большая лужа на дне воронки могут «притянуть» молнию. А участки мха и лишайников, или трещины заполненные влажным грунтом могут «провести» электричество даже внутрь глубоких пещер. Устраиваясь в ложбине, избегайте мест стока ливневой воды. Сами старайтесь тоже лишний раз не намокать.
  8. Отложите подальше все металлические предметы. Обычно все трекинговые палки, ледорубы, скальное железо и даже посуду складывают на кучу в 50-ти метрах от укрытия. Располагать это все следует выше по склону, в стороне от убежища (не прямо над ним).
  9. Где бы вы ни были (на открытом месте или в убежище), для большей безопасности следует принять следующее положение: присесть на корточки, голову опустить, руками обхватить ноги. Во избежание шагового разряда, ступни надо держать плотно сомкнутыми. Под ноги подложите сложенный в несколько раз туристический коврик или сухую веревку.
  10. Если есть риск сорваться (например, испугавшись молнии), зафиксируйте себя страховкой.
  11. Потушите костер (если таковой имеется). Ведь столб дыма это ионизированный газ, который является проводником электричества.

Действия при поражении электрическим током

При легких поражениях возможны обморок, нервное потрясение, головокружение, слабость, ожоги. При более тяжелых — обморок, шок, глухота, угнетение сердечной деятельности. Пострадавшего необходимо согреть, обеспечить полный покой, дать болеутоляющее и успокаивающее. При тяжелых поражениях возможны расстройство дыхания и прекращение сердечной деятельности. Необходима срочная сердечно-легочная реанимация и ввод средств, стимулирующих сердечные сокращения и дыхание.

(Использовались материалы с сайтов: http://www.outdoors.ru, http://www.outdoorukraine.com)

На дворе май, а с ним пришли майские дожди с грозами, громом и молниями. Молнии – ужасные силы стихии, ежегодно они уносят многие тысячи жизней по всему миру, убивают и калечат скот, домашних животных, повреждают имущество на миллионы долларов.

Что же представляют из себя гром и молния?

Молния – это масштабный электрический разряд в слоях атмосферы, происходящий во время грозы и сопровождающийся звуковыми (громовыми) раскатами.

При этом напряжение в разряде молнии может достигать фантастических величин в миллиард вольт, а сила тока достигать сотни тысяч ампер! Сравните, сила тока в жилых домах обычно не превышает пятнадцати ампер.

Как же можно защититься от этих пока ещё малоизведанных и могущественных сил , где спрятаться и укрыться? Об этом мы сейчас и расскажем.

Где укрыться от молнии

Правила поведения при грозе и молнии зависят, прежде всего, от того места, в котором застала вас непогода.

В помещении

Лучший вариант – если ненастье застало вас дома. В этом случае шансы пострадать от грозы минимальны. На всякий случай необходимо закрыть все окна и форточки в квартире, выключить электронные приборы, такие как компьютер и телевизор, при этом необходимо отключить не только питание, но и достать вилки из розетки.

Не стоит находиться рядом возле стен, окон, особенно батарей отопления, разговаривать по телефону. Если же вы стали свидетелем такого необычного явления как шаровая молния , не стоит пытаться убежать, кричать, совершать резкие движения, поскольку от колебания воздуха она может взорваться.

В этом случае специалисты следуют лечь на пол и закрыть голову руками, а лучше всего – уйти в другую комнату подальше от опасного шарика. По тем же причинам не следует махать руками, пытаясь отогнать шаровую молнию в другую сторону.

В поле, на лугу

Если непогода застала вас на открытом пространстве, на лугу, поле, берегу, следует попытаться найти какое-либо укрытие.

Если укрытий поблизости никаких нет, а гром и молнии мечут практически над головой, следует немедленно найти, по возможности, наиболее сухое место и сесть на землю, согнув спину, пригнув голову и плотно сжав ноги. О приближении грозового облака может свидетельствовать тот факт, что волосы на голове становятся «дыбом» или начинают проявляться «дребезжащие, вибрирующие» звуки от окружающих предметов.

Ложиться на землю в этом случае не рекомендуется — таким образом вы увеличиваете площадь для возможного удара. Если вас несколько человек, нужно рассредоточиться, то есть не сидеть рядом друг с другом. Все металлические вещи и предметы нужно снять и сложить их в стороне, минимум в десяти метрах от людей.

В лесу и автомобиле

В лесу следует прятаться под невысокими деревьями. Поскольку молнии обычно бьют в наиболее высокие из них и поражают даже рядом стоящих с ними людей.

Если грозовой фронт застиг вас в автомобиле, всё не так уж и плохо, как может показаться. Дело в том, что пока вы в автомобиле, вы находитесь в безопасности в отличие от распространенного мнения о том, что его корпус сделан из металла, а значит притягивает молнии. Достаточно просто остановить машину, заглушить двигатель и по возможности не касаться руками, головой и другими частями тела металлических частей кузова.

И не нужно останавливаться под одиноко стоящими деревьями, металлическими опорами, вышками и т.п. предметами.

В воде

Наихудший из всех возможных вариантов. Если вы плывете в лодки либо яхте, следует немедленно пристать к берегу и спрятаться в укрытии, в крайнем случае, заплыть куда-нибудь, например, под мост. На яхте необходимо сложить и убрать мачту либо заземлить ее в воду (или, скорее, «заводнить»).

Если вы находитесь в воде, следует быстро выбраться на берег, поскольку на водной глади ваша голова представляет из себя отличную мишень и это без учета того факта, что сама водная поверхность является прекрасным проводником электрического тока, особенно соленая морская вода.

Что делать при ударе молнии

В случае, если кого-то из ваших знакомых поразила молния , или же вы просто стали свидетелем того, как в человека ударила молния, необходимо немедленно оказать пострадавшему медицинскую помощь. Первое, что нужно сделать в таком случае — сделать искусственное дыхание, и сделать его сразу, как только возможно, пока не произошли необратимые изменения в головном мозге. Также нужно вызвать скорую помощь для доставки пострадавшего на обследование в медицинское учреждение, ведь повреждения внутренних органов могут быть внешне и незаметны.

Защита от молний это достаточно важный пункт в электрической цепи дома. Если в многоквартирном доме этим занимается организация, обслуживающая электрическую сеть, то в частном жилом фонде зачастую приходится все брать в свои руки. Но прежде чем начать наш рассказ, мы достаточно в очень краткой форме постараемся рассмотреть, что такое молния и какая она бывает. М олния - это природный разряд электричества .

1. Мощные вертикальные движения воздушных масс.

2. Достаточно влажный воздух.

3. Большой вертикальный градиент температуры.


Классификация молний.

По развивающему каналу.

По характеру заряда.

1. Отрицательные молнии (90%).

2. Положительные молнии (10%).

Молния состоит из одного или нескольких ударов.

1. Короткий удар молнии до 2мс.

2. Длинный удар молнии более 2мс.


Итак наше введение закончено, как вы уже успели заметить, что мы действительно в очень краткой форме постарались вам напомнить багаж школьных знаний. Ну, а теперь переходим непосредственно к нашему сегодняшнему рассказу.

Молниезащита.

Молниезащита бывает внутренней и внешней. Это если посмотреть в глубь вопроса, как бы два охранных контура, которые работая в паре друг с другом, могут почти на все 100% обезопасить ваше жилище.

Внешняя защита.

В первую очередь это молниеотвод, которой всегда устанавливается на самой высокой точке дома, соединенный проводником с вашей .

Задача внешней системы молниезащиты состоит в том, чтобы на долю секунды раньше непосредственного контакта уловить и отправить его по токоотводам на заземление.

Молниеприемник, который устанавливается на крыше, обычно бывает двух видов.

Есть еще один вариант и состоит он в том, что на крышу вашего жилья укладывается металлическая сетка, сваренная из арматур сечением 8 - 10 кв.мм, и с шагом ячеек обычно составляющих 2- 6м.

Но в принципе, между всеми этими способами молниезащиты особой разницы не существует. Задача у всех одна - уловить разряд молнии.

Сечение молниеприемника должно быть не меньше 12 кв.мм, но лучше конечно, чтобы ваш молниеприемник имел запас по сечению. При установке штыря всегда надо помнить, что он должен возвышаться над самой высокой точкой кровли не меньше чем на 30 см, то же самое относится и к тросовому приемнику.

Здесь так же следует помнить еще один момент. Зона, которую защищает громоотвод, примерно равна его высоте. То есть при высоте над землей к примеру 8м он защитит от попадания молнии территорию круга с радиусом равным 8 метрам. И ниже, мы постарались привести вам в пример ряд схематичных рисунков громоотводов и зон, которые они могут защитить.

Рисунок 1.


Рисунок 2.


Рисунок 3.

Провод, по которому энергия молнии пойдет к заземлителю, лучше брать стальной сечением не меньше 10кв.мм или медный с сечением не меньше 6кв.мм. Здесь, это тот случай когда чем толще, тем лучше. Проводник соединяется с приемником сваркой или при помощи болтового соединения. Проводник не должен проходить мимо металлических элементов ближе чем на 30см.

Внутренняя защита.

Данный вид защиты обеспечивают спец устройства, которые обычно добавляются в схему домового щитка и ВУ (вводного устройства). Суть данных спец устройств в следующем - предположим, что молния и не попадает в дом, но во время грозы довольно часто происходят скачки напряжения. Это объясняется тем, что электромагнитное поле при ударе молнии может создавать импульсные токи в проводке и всевозможных устройствах.

Разряд необязательно должен ударить именно в дом - это может произойти и на расстоянии. Но если же все-таки молния попадает в дом, то в лучшем случае молниеотвод сбросит напряжение в заземлитель, но, а в худшем - разряд ударит по электрической сети вашего дома.

Даже когда энергия молнии стечет по молниеотводу, ток, возникающий в проводке, может привести к порче чувствительной аппаратуры. Ну, а при прямом воздействии, лучше и не представлять, что может произойти. И здесь нам бы хотелось представить вашему вниманию достаточно интересную таблицу - способов распространения высоковольтных атмосферных разрядов.

Таблица 1. Высоковольтный атмосферный разряд. Способы распространения.

Чтобы всего этого не произошло существуют специальные устройства - ограничители.


Рисунок 4.

А. Ограничитель категории В.

Б. Ограничитель категории В+С.

В. Ограничитель категории С.

Существует так же ограничитель категории D. Выглядит точно так же, как и представленные нами на данном изображении ограничители. Как вы можете видеть данные устройства по своему внешнему виду напоминают обычные автоматические выключатели, только без рычага отключения. Все, что вам надо знать про ограничители перенапрежения (ОПН) - это то, что они устанавливаются между фазой и заземлением или нулевым проводом и заземлением. Задача ограничителей заключается в нейтрализации импульса перенапряжения.

На практике в основном используются три вида ограничителей - В, С, D.

1. Класс В - данные ограничители устанавливаются на в ходе в щит. Они предназначены для защиты от сверхвысокого напряжения или иначе говоря прямого удара молнии.

2. Класс С - устройства устанавливаются по схеме после ОПН класса В и служат защитой от наведенных токов.

3. Класс D - устанавливается, когда в вашем жилище находятся особо чувствительные приборы.

Применять всегда следует все три вида, потому что у них разный порог чувствительности, и ставить по схеме один за другим. ОПН рассчитаны как для однофазных сетей, так и для трех фазных.

Молния всегда будила фантазию человека и стремление познавать мир. Она принесла на землю огонь, приручив который, люди стали могущественнее. Мы пока не рассчитываем на покорение этого грозного природного явления, но хотели бы «мирного сосуществования». Ведь чем совершеннее создаваемая нами техника, тем опаснее для нее атмосферное электричество. Один из способов защиты - заранее, с помощью специального имитатора, оценивать уязвимость промышленных объектов для тока и электромагнитного поля молнии.

Любить грозу в начале мая легко поэтам и художникам. Энергетик, связист или космонавт от начала грозового сезона в восторг не придет: слишком большие неприятности он обещает. В среднем на каждый квадратный километр территории России ежегодно приходится около трех ударов молний. Их электрический ток доходит до 30 000 А, а у самых мощных разрядов может превысить 200 000 А. Температура в хорошо ионизированном плазменном канале даже умеренной молнии может достигать 30000 °С, что в несколько раз больше, чем в электрической дуге сварочного аппарата. И конечно, это не сулит ничего хорошего многим техническим объектам. Пожары и взрывы от прямого попадания молнии хорошо знакомы специалистам. А вот обыватели риск подобного события явно преувеличивают.

Наконечник флагштока останкинской телебашни. Видны следы оплавленияВ реальности «небесная электрозажигалка» не столь уж эффективна. Представьте: вы пытаетесь развести огонь во время урагана, когда из-за сильного ветра трудно зажечь даже сухую солому. Еще мощнее воздушный поток от канала молнии: ее разряд рождает ударную волну, громовой раскат которой срывает и гасит пламя. Парадокс, но слабая молния пожароопаснее, особенно, если по ее каналу в течение десятых долей секунды (целая вечность в мире искровых разрядов!) протекает ток около 100 А. Последний мало чем отличается от дугового, а электрическая дуга подожжет все, способное гореть.

Впрочем, для здания обычной высоты попадание молнии — явление не частое. Опыт и теория показывают: она «притягивается» к наземному сооружению с расстояния, близкого к трем его высотам. Десятиэтажная башня соберет около 0,08 молний ежегодно, т.е. в среднем 1 удар за 12,5 лет эксплуатации. Дачный домик с мансардой — примерно в 25 раз меньше: в среднем владельцу придется «ждать» около 300 лет.

Но не будем и преуменьшать опасность. Ведь если молния ударит хотя бы в один из 300-400 поселковых домов, местные жители вряд ли сочтут это событие ничтожным. А есть объекты гораздо большей протяженности — скажем, линии электропередачи (НЭП). Их длина вполне может превысить 100 км, высота — 30 м. Значит, справа и слева каждая из них соберет удары с полос шириной по 90 м. Общая площадь «стягивания» молний превысит 18 км2, их число — 50 за год. Разумеется, стальные опоры линии при этом не сгорят, провода не расплавятся. В наконечник флагштока Останкинской телебашни (Москва) молнии ударяют примерно 30 раз в год, однако ничего страшного не происходит. А чтобы понять, чем они опасны для ЛЭП, нужно познать природу электрических, а не термических воздействий.

ГЛАВНАЯ СИЛА МОЛНИИ

При ударе в опору электрической линии ток стекает в землю через сопротивление заземления, которое, как правило, составляет 10-30 Ом. При этом даже «средняя» молния, с током 30 000 А, создает напряжение 300-900 кВ, а мощная — в несколько раз больше. Так возникают грозовые перенапряжения. Если они достигают мегавольтного уровня, изоляция ЛЭП не выдерживает и пробивается. Происходит короткое замыкание. Линия отключается. Еще хуже, когда канал молнии прорывается непосредственно к проводам. Тогда перенапряжение на порядок выше, чем при поражении опоры. Борьба с этим явлением и сегодня остается трудной задачей электроэнергетиков. Причем по мере совершенствования техники ее сложность лишь нарастает.

Останкинская телебашня выступила в роли молниеотвода, пропустив удар молнии на 200 м ниже вершиныЧтобы удовлетворить стремительно растущие потребности человечества в энергии, современные электростанции должны объединяться в мощные системы. В России сейчас функционирует единая энергетическая система: все ее объекты работают взаимосвязанно. Поэтому случайный выход из строя даже одной ЛЭП или электростанции может привести к серьезным последствиям, похожим на происшедшее в Москве в мае 2005 г. В мире отмечено немало системных аварий по вине молний. Одна из них — в США в 1968 г. нанесла многомиллионный ущерб. Тогда грозовой разряд отключил одну ЛЭП, и энергосистема не справилась с возникшим дефицитом энергии.

Неудивительно, что защите ЛЭП от молний специалисты уделяют должное внимание. По всей длине воздушных линий напряжением 110 кВ и более подвешивают специальные металлические тросы, стремясь сверху уберечь провода от прямого попадания. Их изоляцию максимально усиливают, сопротивление заземления опор предельно снижают, а для дополнительного ограничения перенапряжений используют полупроводниковые устройства, подобные тем, что защищают входные цепи компьютеров или высококачественных телевизоров. Правда, их сходство — только в принципе действия, рабочее же напряжение для линейных ограничителей исчисляется миллионами вольт — оцените масштабы затрат на защиту от молнии!

Часто спрашивают, реально ли спроектировать абсолютно молниестойкую линию? Ответ однозначный — да. Но тут неизбежны два новых вопроса: кому это надо и сколько будет стоить? Ведь если нельзя повредить надежно защищенную ЛЭП, то можно, например, сформировать ложную команду на отключение линии или просто разрушить низковольтные цепи автоматики, которые в современном исполнении построены на микропроцессорной технике. Рабочее напряжение микросхем с каждым годом снижается. Сегодня оно исчисляется единицами вольт. Вот где простор для молнии! И нет нужды в прямом ударе, ибо она способна действовать дистанционно и сразу на больших площадях. Главным ее оружием становится электромагнитное поле. Выше говорилось о токе молнии, хотя для оценки электродвижущей силы магнитной индукции важен и ток, и скорость его роста. У молнии последняя может превышать 2 . 1011 А/с. В любом контуре площадью 1 м2 на расстоянии 100 м от канала молнии такой ток наведет напряжение примерно вдвое выше, чем в розетках жилого дома. Не нужно большой фантазии, чтобы представить судьбу микросхем, рассчитанных на напряжение порядка одного вольта.

В мировой практике известно множество тяжелых аварий из-за разрушения цепей управления грозовым разрядом. В этот перечень попадают повреждения бортовой аппаратуры авиалайнеров и космических кораблей, ложные отключения сразу целых «пакетов» высоковольтных ЛЭП, выход из строя аппаратуры антенных систем мобильной связи. К сожалению, заметное место здесь занимают и «бьющие» по карману обычных граждан повреждения бытовой техники, все больше заполняющей наши дома.

ПУТИ ЗАЩИТЫ

Мы привыкли рассчитывать на защиту молниеотводами. Помните оду великого естествоиспытателя XVIII в., академика Михаила Ломоносова на их изобретение? Наш знаменитый соотечественник восторгался победой, говорил, что небесный огонь перестал быть опасным. Конечно, это приспособление на крыше жилого дома не даст молнии поджечь деревянный настил или другие горючие строительные материалы. В отношении же электромагнитных воздействий он бессилен. Совершенно безразлично, течет ли ток молнии в ее канале или по металлическому стержню молниеотвода, все равно он возбуждает магнитное поле и наводит за счет магнитной индукции во внутренних электрических цепях опасное напряжение. Для эффективной борьбы с этим молниеотвод обязан перехватывать канал разряда на отдаленных подступах к защищаемому объекту, т.е. стать очень высоким, потому что наводимое напряжение обратно пропорционально расстоянию до проводника с током.

Сегодня накоплен большой опыт использования таких конструкций разной высоты. Однако статистика не слишком утешительная. Зону защиты стержневого молниеотвода обычно представляют в виде конуса, осью которого он является, но с вершиной, расположенной несколько ниже, чем его верхний конец. Обычно 30-метровый «стержень» обеспечивает 99%-ную надежность защиты здания, если возвышается над ним примерно на 6 м. Добиться этого — не проблема. Но с увеличением высоты молниеотвода расстояние от его вершины до «прикрываемого» объекта, минимально необходимое для удовлетворительной защиты, стремительно нарастает. Для 200-метровой конструкции той же степени надежности этот параметр уже превышает 60 м, а для 500-метровой — 200 м.

В подобной роли выступает и упомянутая Останкинская телебашня: она не в состоянии защитить самое себя, пропускает удары молнии на расстоянии 200 м ниже вершины. Радиус зоны защиты на уровне земли для высоких молниеотводов также резко увеличивается: у 30-метрового он сопоставим с его высотой, у той же телебашни — 1/5 ее высоты.

Иными словами, нельзя надеяться, что молниеотводы традиционной конструкции сумеют перехватить молнию на дальних подступах к объекту, особенно если последний занимает большую площадь на поверхности земли. Значит, нужно считаться с реальной вероятностью грозового разряда в территорию электрических станций и подстанций, аэродромов, складов жидкого и газообразного топлива, протяженных антенных полей. Растекаясь в земле, ток молнии частично попадает в многочисленные подземные коммуникации современных технических объектов. Как правило, там находятся электрические цепи систем автоматики, управления и обработки информации - тех самых микроэлектронных устройств, о которых говорилось выше. Кстати, расчет токов в земле сложен даже в самой простейшей постановке. Трудности усугубляются из-за сильных изменений сопротивления большинства грунтов в зависимости от силы растекающихся в них токов килоамперного уровня, как раз свойственных разрядам атмосферного электричества. К расчету цепей с такими нелинейными сопротивлениями неприменим закон Ома.

К «нелинейности» грунта добавляется вероятность образования в нем протяженных искровых каналов. Ремонтные бригады кабельных линий связи хорошо знакомы с такой картиной. От высокого дерева на лесной опушке по земле тянется борозда, будто от сохи или старинного плуга, и обрывается точно над трассой подземного телефонного кабеля, который в этом месте поврежден - металлическая оболочка смята, изоляция жил разрушена. Так проявилось действие молнии. Она ударила в дерево, и ее ток, растекаясь по корням, создал в грунте сильное электрическое поле, сформировал в нем плазменный искровой канал. Фактически молния как бы продолжила свое развитие, только не по воздуху, а в земле. И так она может проходить десятки, а в особенно плохо проводящих ток грунтах (скальных или вечномерзлых породах) и сотни метров. Прорыв ее к объекту осуществляется не традиционным путем — сверху, а, минуя любые молниеотводы, снизу. Скользящие разряды вдоль поверхности грунта хорошо воспроизводятся в лаборатории. Все эти сложные и сильно нелинейные явления нуждаются в экспериментальном исследовании, моделировании.

Ток для рождения разряда может быть сформирован искусственным импульсным источником. Энергия около минуты накапливается в конденсаторной батарее, а потом за десяток микросекунд «выплескивается» в бассейн с грунтом. Подобные емкостные накопители есть во многих высоковольтных исследовательских центрах. Их габариты достигают десятков метров, масса — десятков тонн. Такие не доставишь на территорию электрической подстанции или другого промышленного объекта, чтобы в полном масштабе воспроизвести условия растекания токов молнии. Это удается разве что случайно, когда объект соседствует с высоковольтным стендом — например, в открытой установке Сибирского научно-исследовательского института энергетики импульсный генератор высоких напряжений размещен рядом с ЛЭП в 110 кВ. Но это, конечно, исключение.

ИМИТАТОР УДАРА МОЛНИИ

На деле же речь должна идти не об уникальном эксперименте, а о рядовой ситуации. В полномасштабной имитации тока молнии крайне нуждаются специалисты, поскольку только так можно получить достоверную картину распределения токов по подземным коммуникациям, измерить последствия воздействия электромагнитного поля на устройства микропроцессорной техники, определить характер распространения скользящих искровых каналов. Соответствующие испытания должны стать массовыми и производиться до ввода в эксплуатацию каждого принципиально нового ответственного технического объекта, как это давно делается в авиации, космонавтике. Сегодня нет иной альтернативы, кроме создания мощного, но малогабаритного и мобильного источника импульсных токов с параметрами тока молнии. Его макетный образец уже существует и успешно испытан на подстанции «Донино» (110 кВ) в сентябре 2005 г. Все оборудование разместилось в заводском прицепе от серийной «Волги».

Мобильный испытательный комплекс построен на основе генератора, который преобразует механическую энергию взрыва в электрическую. Этот процесс в основном хорошо известен: он имеет место в любой электрической машине, где механическая сила движет ротор, противодействуя силе его взаимодействия с магнитным полем статора. Принципиальное различие же состоит в исключительно высокой скорости выделения энергии при взрыве, быстро разгоняющего металлический поршень (лайнер) внутри катушки. Он за микросекунды вытесняет магнитное поле, обеспечивая возбуждение высокого напряжения в импульсном трансформаторе. После дополнительного усиления импульсным трансформатором напряжение формирует ток в испытуемом объекте. Идея этого устройства принадлежит нашему выдающемуся соотечественнику, «отцу» водородной бомбы академику А.Д. Сахарову.

Взрыв в специальной высокопрочной камере разрушает лишь катушку длиной 0,5 м и лайнер внутри нее. Остальные элементы генератора используют многократно. Схему можно настроить так, чтобы скорость роста и длительность формируемого импульса соответствовали аналогичным параметрам тока молнии. Причем его удается «вогнать» в объект большой длины, например, в провод между опорами ЛЭП, в контур заземления современной подстанции или в фюзеляж авиалайнера.

При испытаниях макетного образца генератора в камеру заложили всего 250 г взрывчатки. Этого достаточно для формирования импульса тока амплитудой до 20 000 А. Правда, для первого раза на столь радикальное воздействие не пошли — ток ограничили искусственно. При запуске установки раздался лишь легкий хлопок погашенного камерой взрыва. А проверенные затем записи цифровых осциллографов показали: импульс тока с заданными параметрами успешно был введен в молниеотвод подстанции. Датчики отметили скачок напряжения в различных точках контура заземления.

Ныне штатный комплекс в процессе подготовки. Он будет настроен на полномасштабную имитацию токов молнии и при этом разместится в кузове серийного грузовика. Взрывная камера генератора рассчитана на работу с 2 кг взрывчатки. Есть все основания считать, что комплекс окажется универсальным. С его помощью можно будет испытывать на устойчивость к воздействию тока и электромагнитного поля молнии не только электроэнергетические, но и другие крупногабаритные объекты новой техники: АЭС, телекоммуникационные устройства, ракетные комплексы и т.д.

Хотелось бы закончить статью на мажорной ноте, тем более, что для этого есть основания. Ввод штатного испытательного комплекса позволит объективно оценивать эффективность самых современных защитных средств. Тем не менее, какая-то неудовлетворенность все равно остается. Фактически человек снова идет на поводу у молнии и вынужден мириться с ее своеволием, теряя при этом немало денег. Применение средств молниезащиты приводит к увеличению габаритов и веса объекта, растут затраты дефицитных материалов. Вполне реальны парадоксальные ситуации, когда размеры защитных средств превышают таковые защищаемого конструктивного элемента. В инженерном фольклоре хранится ответ известного авиаконструктора на предложение спроектировать абсолютно надежный самолет: такую работу можно выполнить, если заказчик смирится с единственным недостатком проекта — самолет никогда не оторвется от земли. В молниезащите сегодня происходит нечто подобное. Вместо наступления специалисты держат круговую оборону. Чтобы вырваться из порочного круга, нужно понять механизм формирования траектории молнии и найти средства управления этим процессом за счет слабых внешних воздействий. Задача сложная, но далеко не безнадежная. Сегодня ясно, что молния, движущаяся от облака к земле, никогда не ударяет в наземный объект: от его вершины навстречу приближающейся молнии прорастает искровой канал, так называемый встречный лидер. В зависимости от высоты объекта он вытягивается на десятки метров, иногда на несколько сотен и встречает молнию. Конечно, это «свидание» происходит не всегда — молния может промахнуться.

Но вполне очевидно: чем раньше возникнет встречный лидер, тем дальше он продвинется к молнии и, значит, больше шансов на их встречу. Следовательно, нужно научиться «тормозить» искровые каналы от защищаемых объектов и, напротив, стимулировать от молниеотвода. Основание для оптимизма внушают те весьма слабые внешние электрические поля, в которых формируется молния. В грозовой обстановке поле у земли около 100-200 В/см — примерно такое же, как на поверхности электрического шнура утюга или электробритвы. Раз молния довольствуется такой малостью, значит столь же слабыми могут быть управляющие ею воздействия. Важно только понять, в какой момент и в каком виде они должны быть поданы. Впереди трудная, но интересная исследовательская работа.

Академик Владимир ФОРТОВ, Объединенный институт физики высоких температур РАН, доктор технических наук Эдуард БАЗЕЛЯН, Энергетический институт им. Г.М. Кржижановского.