1.3 Передвижение воды по растению

Вода, поглощенная клетками корня, под влиянием разности водных потенциалов, которые возникают благодаря транспирации, а также силе корневого давления, передвигается до проводящих путей ксилемы. Согласно современным представлениям, вода в корневой системе передвигается не только по живым клеткам. Еще в 1932 г. немецкий физиолог Мюнх развил представление о существовании в корневой системе двух относительно не зависимых друг от друга объемов, по которым передвигается вода, - апопласта и симпласта. Апопласт – это свободное пространство корня, в которое входят межклетные промежутки, оболочки клеток, а также сосуды ксилемы. Симпласт – это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочисленным плазмодесмам, соединяющим между собой протопласт отдельных клеток, симпласт представляет единую систему. Апопласт, по-видимому, не непрерывен, а разделен на два объема. Первая часть апопласта расположена в коре корня до клеток эндодермы, вторая – по другую сторону клеток эндодермы, и включает в себя сосуды ксилемы. Клетки эндодермы благодаря пояскам Каспари представляют как бы барьер для передвижения воды по свободному пространству (межклетникам и клеточным оболочкам). Для того чтоб попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мембрану и главным образом по апопласту и лишь частично по симпласту. Однако в клетках эндодермы передвижение воды идет, по-видимому, по симпласту. Далее вода поступает в сосуды ксилемы. Затем передвижение воды идет по сосудистой системе корня, стебля и листа.

Из сосудов стебля вода движется через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа. Иногда мелких ответвлений жилок листа так много, что они подводят воду почти к каждой клетке. Вся вода в клетке находится в равновесном состоянии. Иначе говоря, в смысле насыщенности водой, имеется равновесие между вакуолью, цитоплазмой и клеточной оболочкой, их водные потенциалы равны. Вода передвигается от клетки к клетке благодаря градиенту сосущей силы.

Вся вода в растении представляет единую взаимосвязанную систему. Поскольку между молекулами воды имеются силы сцепления (когезия), вода поднимается на высоту значительно большую 10 м. сила сцепления увеличивается, так как молекулы воды обладают большим сродством друг к другу. Силы сцепления обладают и между водой и стенками сосудов.

Степень натяжения водных нитей в сосудах зависит от соотношения процессов поглощения и испарения воды. Все это позволяет растительному организму поддерживать единую водную систему и не обязательно восполнять каждую каплю испаряемой воды.

В том случае, если в отдельные членики сосудов попадает воздух, они, по-видимому, выключается из общего тока проведения воды. Таков путь передвижения воды по растению (рис. 2).


Рис.2. Путь воды в растении.

Скорость перемещения воды по растению в течение суток изменяется. В дневные часы она на много больше. При этом разные виды растений различаются по скорости передвижения воды. Изменение температуры, введение метаболических ингибиторов не влияют на передвижение воды. Вместе с тем этот процесс, как и следовало ожидать, очень сильно зависит от скорости транспирации и от диаметра водопроводящих сосудов. В более широких сосудах вода встречает меньшее сопротивление. Однако надо учитывать, что в более широкие сосуды могут попасть пузырьки воздуха или произойти какие-либо иные нарушения тока воды.


2.Транспирация: физиологические механизмы

В основе расходования воды растительным организмом лежит физиологический процесс испарения – переход воды из жидкого в парообразное состояние, происходящей при соприкосновении органов растения с не насыщенной водой атмосферой. Однако этот процесс осложнен физиологическими и анатомическими особенностями растения, и его называют транспирацией

2.1 Назначение транспирации

В обычно протекающих процессах транспирация не является необходимой. Так если выращивать растения в условиях высокой и низкой влажности воздуха, то, естественно, в первом случае транспирация будет идти сознательно меньшей интенсивностью. Однако рост растений будет одинаков или даже лучше там, где влажность воздуха выше, а транспирация меньше. Известно, что большая часть всей поглощенной энергии тратится на транспирацию, которая в определенном объеме полезна растительному организму.

1.Транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете. Температура сильно транспирирующего листа может быть примерно 7`C ниже температуры листа завязающего, не транспирирующего. Это особенно важно в связи с тем, что перегрев, разрушая хлоропласты, резко снижает процесс фотосинтеза (оптимальная температура для процесса фотосинтеза около 30-33`C). Именно благодаря высокой транспирирующей способности многие растения хорошо переносят повышенную температуру.

2.Транспирация создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое.

3. С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом, чем интенсивнее транспирация, тем быстрее идет процесс передвижения.

2.2 Лист как орган транспирации

Основным транспортирующим органом является лист. Средняя толщина листа составляет 100-200 мкм. Паренхимных клетки листа расположены рыхло, между ними имеется система межклетников, составляющая в общей сложности от 15 до 25% объема листа. Лист окружен покровной тканью- эпидермисом, состоящим из компактно расположенных клеток, наружные стенки которых утолщены. Листья большинства растений покрыта кутикулой, в состав которой входит оксимонокарбоновые кислоты, содержащие по 16-18 атомов углерода и по 2-3 гидроксильных группы. Эти кислоты соединены друг с другом в цепочки с помощью эфирных связей. Кутикула варьирует как по составу, так и по толщине. Более развитой кутикулой характеризуются листья светолюбивых растений по сравнению с влаголюбивыми. Кутикула вместе с клетками эпидермиса образует как бы барьер на пути испарения паров воды. При этом особенно значительную преграду составляет кутикула. Удаление кутикулы во много раз повышает интенсивность испарения. Сопротивление выходу паров оказывают в определенной мере и утолщенные стенки клетки эпидермиса. Все эти особенности выработались в процессе эволюции как приспособление к сокращению испарения. Для соприкосновения листа с атмосферой имеются устьица. Устьица – одно из оригинальных приспособлений листа, обладающее способностью открываться и закрываться. Обычно устьичные отверстия ограничены двумя замыкающими клетками, стенки которых не равномерно утолщены. У двудольных растений замыкающие клетки бобовидной, или полулунной, формы, при этом их внутренние прилегающие друг к другу стенки долее толстые, а внешние – более тонкие. Когда воды мало, замыкающие клетки плотно прилегают друг к другу и устьичная щель закрыта. Когда воды в замыкающих клетках много, то она давит на стенки и более тонкие стенки растягиваются сильнее, а более толстые втягиваются внутрь, между замыкающими клетками появляется щель. У однодольных растений строение замыкающих клеток несколько иное. Они представлены двумя удлинёнными клетками, на концах которых стенки более тонкие. При насыщении водой более тонкие стенки на концах растягиваются и раздвигают замыкающие клетки, благодаря чему образуется щель. (рис.3)

Рис.3 Структура устьиц у двудольных (А) и однодольных (Б) растений:

1-устьичная щель; 2-ядро; 3-хлоропласты; 4-толстая клеточная стенка; 5-замыкающие клетки устьиц; 6-побочные клетки; 7-клетки эпидермиса с многочисленными порами.

Число устьичных отверстий колеблется в зависимости от вида растения от 1 до 60 тыс. на 1 кв.см. листа. Большая часть устьиц расположена на нижней стороне листа. Диаметр устьичных щелей составляет всего 3-12 мкм.

Устьица соединяют внутренние пространство листа с внешней средой. Вода проступает в лист через сеть жилок, в которых расположены сосудистые элементы. Возможны два пути испарения: 1) через наружные стенки клеток эпидермиса в атмосферу; 2) через стенки клеток мезофилла в межклеточное пространство листа и далее в парообразном состоянии через устьица. В связи с этим различают устьичную и кутикулярную транспирацию. В том, что действительно испарение идет не только через устьица, но и через кутикулу, легко убедиться. Так, если взять листья, у которых устьица расположены только с нижней стороны (например, листья яблони), и замазать эту сторону вазелином, то испарение воды будет продолжаться, хотя и в значительно уменьшенном размере. Следовательно, определенное количество воды испаряется через кутикулу.

Кутикулярная транспирация обычно составляет около 10% от общей потери воды листом. Однако в некоторых случаях у растений, листья которых характеризуются слабым развитием кутикулы, доля этого вида транспирации может повышаться до 30%. Имеет значение также возраст листа. Молодые листья, как правило, имеют слабо развитую кутикулу и, следовательно, более интенсивную кутикулярную транспирацию. Наименьшая Кутикулярная транспирация наблюдается у листьев, Закончивших свой рост. У старых листьев доля кутикулярной транспирации снова возрастает, так как, хотя кутикула и сохраняет достаточную толщину, в ней появляются трещины, через которые легко проходят пары воды.

Все же основная часть воды испаряется через устьица. Процесс устьичной транспирации можно подразделить на ряд этапов.

Первый этап – это переход воды из клеточных оболочек, где она находится в капельно-жидком состоянии, в межклетники (парообразное состояние). Это собственно процесс испарения. Важно подчеркнуть, что уже на этом этапе растение обладает способностью регулировать процесс транспирации (внеустьичная регулировка). Это связано с несколькими причинами: 1. Между всеми частями клетки существует водное равновесие. Чем меньше воды в клетке, тем выше становится концентрация клеточного сока. А это, в свою очередь, будет уменьшать интенсивность испарения. 2. Между микро- и макро- фибриллами целлюлозы, составляющими клеточные оболочки, имеются капиллярные промежутки. Вода испаряется именно из капилляров. Когда воды в клетках достаточно, клеточные оболочки насыщенны водой, мениски в капиллярах имеют выпуклую форму, силы поверхностного натяжения ослаблены. В этом случае молекулы воды легко отрываются и переходят в парообразное состояние, заполняя межклетники. При уменьшении содержания воды мениски в капиллярах становятся более вогнутыми, это увеличивает силы поверхностного натяжения, и вода с большей силой удерживается в клеточных оболочках. Чем более вогнут мениск, тем путь молекул воды до межклеточных пространств более длинен и извилист. В результате интенсивность испарения сокращается. Таким образом, уже на этом первом этапе растение испаряет тем меньше воды, чем меньше её содержит.

Второй этап – это выход паров воды из межклетников через устьичные щели. Поверхность всех клеточных стенок, соприкасающихся с межклетными пространствами, повышает поверхность листа примерно в 10-30 раз. Все же если устьица закрыты, то все это пространство быстро насыщается парами воды и переход воды из жидкого в парообразное состояние прекращается. Иная картина наблюдается при открытых устьицах. Как только часть паров воды выедет из межклетников через устьичные щели, так сейчас же этот недостаток восполняется за счет испарения воды с поверхности клеток. Поэтому степень открытости устьиц является основным механизмом, регулирующим интенсивность транспирации. При открытых устьицах общая поверхность устьичных щелей составляет всего 1-2% от площади листа. Казалось бы, это должно очень сильно уменьшать испарение по сравнению с испарением свободной водной поверхности той же площади, что и лист. Однако это не так. Сравнение испарения листа с испарением со свободной водной поверхности той же площади показало, что оно идет не в 100 раз, как это следовало бы, исходя из размеров открытой площади (1%), а всего в два раза медленнее. Объяснение этому явлению было дано в исследованиях английских физиологов Брауна и Эскомба, которые установили, что испарение из ряда мелких отверстий идет быстрее, чем из одного крупного той же площади. Это связано с так называемым явлением краевой диффузии. При диффузии из отверстий, отстоящих друг от друга на некотором расстоянии, молекулы воды, расположенные по краям, рассеиваются быстрее. Естественно, что таких краевых молекул значительно больше в ряде мелких отверстий по сравнению с одним крупным. В связи с этим для малых отверстий интенсивность испарения пропорциональна их диаметру, а не площади. Это видно из данных таблицы.

Диаметр пор,

Площадь пор,

В отн.ед. (пd 2)

Периметр,

Испарение воды,

Указанная закономерность проявляется в том случае, если мелкие поры расположены достаточно далеко друг от друга. Структура листа удовлетворяет указанным требованиям. Поры (устьица) имеют малый диаметр и достаточно удалены друг от друга. При открытых устьицах выход паров воды идет достаточно интенсивно, закрытие устьиц резко тормозит испарение. Именно на этом этапе вступает в действие устьичная регулировка транспирации. При недостатке воды в листе устьица автоматически закрываются.

Полное закрытие устьиц сокращает транспирацию примерно на 90%. Вместе с тем уменьшение диаметра устьичных щелей не всегда приводит к соответственному сокращению транспирационного процесса. Определения показали, что устьица должны закрываться больше чем на Ѕ, для того чтобы это сказалось на уменьшении интенсивности транспирации.

Третий этап транспирации – это диффузия паров воды от поверхности листа в более далекие слои атмосферы. Этот этап регулируется лишь условиями внешней среды.


3.Адаптация к дефициту воды

Вода является необходимым условием существования всех живых организмов на Земле. Значение воды в процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы метаболизма, служит важнейшим исходным, промежуточным или конечным продуктом биохимических реакций. Особая роль воды для наземных организмов (особенно растений) заключается в необходимости постоянного пополнения ее, из-за потерь при испарении. Поэтому вся эволюция наземных организмов шла в направлении приспособления к активному добыванию и экономному использованию влаги. Наконец, для многих видов растений, животных, грибов и микроорганизмов вода является непосредственной средой их обитания.

Увлажненность местообитания и, как следствие, водообеснечение наземных организмов зависят, прежде всего, от количества атмосферных осадков, их распределения по временам года, наличия водоемов, уровня грунтовых вод, запасов почвенной влаги и тд. Влажность оказывает влияние на распространение растений и животных, как в пределах ограниченной территории, так и в широком географическом масштабе, определяя их зональность (смена лесов степями, степей - полупустынями и пустынями).

При изучении экологической роли воды учитывается не только количество выпадающих осадков, но и соотношение их величины и испаряемости. Области, в которых испарение превышает годовую величину суммы осадков, называются аридными (сухими, засушливыми). В аридных областях растения испытывают недостаток влаги в течение большей части вегетационного периода. В гумидпых (влажных) областях растения обеспечены водой в достаточной мере.

Экологические группы растений по отношению к влаге и их адаптации к водному режиму. Высшие наземные растения, ведущие прикрепленный образ жизни, в большей степени, чем животные, зависят от обеспеченности субстрата и воздуха влагой. По приуроченности к местообитаниям с разными условиями увлажнения и по выработке соответствующих приспособлений среди наземных растений различают три основные экологические группы: гигрофиты, мезофиты и ксерофиты. Условия водоснабжения существенно влияют на их внешний облик и внутреннюю структуру.

Гигрофиты - растения избыточно увлажненных местообитаний с высокой влажностью воздуха и почвы. Для них характерно отсутствие приспособлений, ограничивающих расход воды, и неспособность переносить даже незначительную ее потерю. Наиболее типичные гигрофиты - травянистые растения и эпифиты влажных тропических лесов и нижних ярусов сырых лесов в разных климатических зонах (чистотел большой, недотрога обыкновенная, кислица обыкновенная и др.), прибрежные виды (калужница болотная, плакун-трава, рогоз, камыш, тростник), растения сырых и влажных лугов, болот (белокрыльник болотный, сабельник болотный, вахта трехлистная, осоки), некоторые культурные растения.

Характерные структурные черты гигрофитов - тонкие листовые пластинки с небольшим числом широко открытых устьиц, рыхлое сложение тканей листа с крупными межклетниками, слабое развитие водопроводящей системы (ксилемы), тонкие слаборазветвленные корни, часто без корневых волосков. К физиологическим адаптациям гигрофитов следует отнести низкое осмотическое давление клеточного сока, незначительную водоудерживающую способность и, как следствие, высокую интенсивность транспирации, которая мало отличается от физического испарения. Избыточная влага удаляется также путем гуттации - выделения воды через специальные выделительные клетки, расположенные по краю листа. Избыточная влага затрудняет аэрацию, а следовательно, дыхание и всасывающую деятельность корней, поэтому удаление излишков влаги представляет собой борьбу растений за доступ воздуха.

Ксерофиты - растения сухих местообитаний, способные переносить продолжительную засуху, оставаясь физиологически активными. Это растения пустынь, сухих степей, саванн, сухих субтропиков, песчаных дюн и сухих, сильно нагреваемых склонов. Структурные и физиологические особенности ксерофитов нацелены на преодоление постоянного или временного недостатка влаги в почве или воздухе. Решение данной проблемы осуществляется тремя способами:

1) эффективным добыванием (всасыванием) воды

2) экономным ее расходованием

3) способностью переносить большие потери воды

Интенсивное добывание воды из почвы достигается ксерофитами благодаря хорошо развитой корневой системе. По общей массе корневые системы ксерофитов примерно в 10 раз, а иногда и в 300-400 раз превышают надземные части. Длина корней может достигать 10-15 м, а у саксаула черного - 30-40 м, что позволяет растениям использовать влагу глубоких почвенных горизонтов, а в отдельных случаях и грунтовых вод. Встречаются и поверхностные, хорошо развитые корневые системы, приспособленные к поглощению скудных атмосферных осадков, орошающих лишь верхние горизонты почвы.

Экономное расходование влаги ксерофитами обеспечивается тем, что листья у них мелкие, узкие, жесткие, с толстой кутикулой, с многослойным толстостенным эпидермисом, с большим количеством механических тканей, поэтому даже при большой потере воды листья не теряют упругости и тургора. Клетки листа мелкие, плотно упакованы, благодаря чему сильно сокращается внутренняя испаряющая поверхность. Кроме того, у ксерофитов повышенное осмотическое давление клеточного сока, благодаря чему они могут всасывать воду даже при больших водоотнимающих силах почвы.

К физиологическим адаптациям относится и высокая водоудерживающая способность клеток и тканей, обусловленная большой вязкостью и эластичностью цитоплазмы, значительной долей связанной воды в общем водном запасе и т. д. Это позволяет ксерофитам переносить глубокое обезвоживание тканей (до 75% всего водного запаса) без потери жизнеспособности. Кроме того, одной из биохимических основ засухоустойчивости растений является сохранение активности ферментов при глубоком обезвоживании.

Ксерофиты с наиболее ярко выраженными ксероморфными чертами строения листьев, перечисленными выше, имеют своеобразный внешний облик, за что получили название склерофиты.

К группе ксерофитов относятся и суккуленты - растения с сочными мясистыми листьями или стеблями, содержащими сильно развитую водоносную ткань. Различают листовые суккуленты (агавы, алоэ, молодило, очитки) и стеблевые, у которых листья редуцированы, а надземные части представлены мясистыми стеблями (кактусы, некоторые молочаи и др.). Фотосинтез у стеблевых суккулентов осуществляется периферическим слоем паренхимы стебля, содержащим хлорофилл. Длительные засушливые периоды преодолеваются ими путем накопления воды в водоносных тканях, связывания ее коллоидами клеток, экономного расходования, которое обеспечивается защитой эпидермиса растений восковым налетом, погруженными в ткань листа или стебля немногочисленными днем закрытыми устьицами. В результате транспирация у суккулентов чрезвычайно мала: в пустынях кактусы из рода Camegia транспирируют в сутки всего лишь I -3 мг воды на 1 г сырой массы.

Корневая система поверхностная, мало развитая, рассчитана на поглощение воды из верхних слоев почвы, увлажненных редко выпадающими дождями. В засуху корни могут отмирать, но после дождей быстро (за 2-4 дня) отрастают новые. Суккуленты приурочены главным образом к засушливым зонам Центральной Америки, Южной Африки, Средиземноморья.

Мезофиты - занимают промежуточное положение между гигрофитами и ксерофитами. Они распространены в умеренно влажных зонах с умеренно теплым режимом и достаточно хорошей обеспеченностью минеральным питанием. К мезофитам относятся растения лугов, травянистого покрова лесов, лиственные деревья и кустарники из областей умеренно влажного климата, а также большинство культурных растений и сорняки. Для мезофитов характерна высокая экологическая пластичность, позволяющая им адаптироваться к меняющимся условиям внешней среды.

Специфичные пути регуляции водообмена позволили растениям занять самые различные по экологическим условиям участки суши. Многообразие способов приспособления лежит, таким образом, в основе распространения растений на Земле, где дефицит влаги является одной из главных проблем экологической адаптации.


Заключение

Из всего выше перечисленного можно вывести общее заключение, что при дефиците влаги растения могут адаптироваться е.т. образование корневой системы, которая достигает влажных зон почвы; ограничение расхода воды на транспирацию; запасание воды в тканях растений.

Так как вода является основной составной частью растительных организмов. Вода- это та среда, в которой протекает все процессы обмена веществ.

Водный ток обеспечивает связь между отдельными органами растений. Питательные вещества передвигаются по растению в растворенном виде. Насыщенность водой (тургор) обеспечивает прочность тканей, сохранение структуры травянистых растений, определенную ориентировку организмов растений в пространстве. Рост клеток в фазе растяжения идет главным образом за счет накопления воды в вакуоли.

Таким образом, вода обеспечивает протекание процессов обмена, коррелятивные взаимодействия, связь организма со средой. Для нормальной жизнедеятельности клетка должна быть насыщенна водой.

Основным источником влаги является вода, находящаяся в почве, и основным органном поглощения воды является корневая система. Роль этого органа прежде всего заключается в том, что благодаря огромной поверхности обеспечивается поступление воды в растения из возможно большого объема почвы. Сформировавшаяся корневая система представляет собой сложный орган с хорошо дифференцированной внешней и внутренней структурой.


Литература

1.Якушкина Н.И. Физиология растений. М., Просвещение, 1980г.

2.Козловский Водный обмен растений. М., Колос. 1969г.

3.Сказкин Ф.Д. Критический период у растений к недостаточному водоснабжению. М., Наука. 1968г.

4.Радкевич В.А. Экология. Мин., Высшая школа. 1983г.

5.Генкель П.А. Физиология устойчивости растительных организмов. М., Изд-во МГУ. 1967г. т.3.

6. Жданов В.С. Аквариумные растения. / Под. ред. Коровина. -

М.: Лесн. пром-ть, 1981

7. Горышина Т.К. Экология растений. – М.: Высшая школа,1979

Часть накопленных в процессе фотосинтеза углеводов теряется. Однако все попытки искусственно ингибировать фотодыхание приводили к общему снижению интенсивности фотосинтеза. На современном этапе развития физиологии растений принято считать, что основное значение фотодыхания заключается в его защитной роли. Сбрасывая таким образом избыточную энергию, растение избегает разрушения фотосистем, ...

У засухоустойчивых растений эти показатели будут выше. В селекционной работе используют такой показатель, как содержание статолитного крахмала в кор­невом чехлике. Генетически обусловленным признаком засухо­устойчивости растений является способность их вегетативных органов (особенно листьев) накапливать во время засухи пролин. При этом концентрация пролина увеличивается в 10-100 раз. В пролине...

Включает в себя такие понятия, как поступление, движение воды в растениях и испарение ее.

Вода необходима растениям

Передвигается вода в растениях по клеткам коровой паренхимы до центрального цилиндра корня, затем по проводящей системе до листовой паренхимы и, наконец, по клеткам листовой паренхимы. На первом участке пути вода передвигается благодаря повышению сосущей силы клеток корня.


Движение воды от корневого волоска в сторону центральных сосудов

Этот отрезок пути очень небольшой (доли миллиметра), но передвижение воды по этому участку очень затруднено, так как воде приходится преодолевать сопротивление слоев живой протоплазмы . Это сопротивление примерно равно 1 атм на 1 мм пути, поэтому передвижение воды по живым клеткам на более значительные расстояния не обеспечивало бы потребности растения в воде.

Действительно, растения , у которых не развита проводящая система , например мхи, (подробнее: ) имеют незначительные размеры и приспособлены к жизни только во влажных условиях. У наземных растений в процессе эволюции образовалась проводящая ткань, которая устанавливает сообщение между всасывающими воду корнями и испаряющими воду листьями.

Проводящая воду ткань

Проводящая воду ткань состоит из сосудов, или трахей , и трахеидов ; она начинается в центральном цилиндре корня, проходит через весь корень и стебель и заканчивается в виде тончайших разветвлений - жилок, пронизывающих всю листовую паренхиму.

Сосуды представляют собой мертвые трубки, образовавшиеся из живых клеток. В сосудах сохраняются поперечные перегородки на разном расстоянии (от нескольких миллиметров до метра в зависимости от вида растения) одна от другой.

Исчезновение перегородок даже на небольшом расстоянии в тысячи раз ускоряет передвижение воды. Трахеиды это длинные мертвые клетки с заостренными концами. При образовании сосудов и трахеид происходит утолщение и одревеснение их оболочек, вследствие чего они не сдавливаются под давлением окружающих их живых паренхимных клеток.


Движение воды в древесных растениях

Одревеснение, однако, никогда не бывает сплошным: на стенке сосудов остаются тонкие места - поры, по которым вода может перемещаться не только вверх по сосудам, но и в радиальном направлении.

Подъем воды по сосудам

Подъем воды по сосудам можно доказать следующим опытом. Если у срезанной и поставленной в воду ветки снять кольцо коры выше уровня воды, листья ее не завянут, так как сосуды расположены в древесине.

Движение воды по сосудам чаще всего направлено снизу вверх и называется поэтому восходящим током .


Последний отрезок пути водного тока по листовой паренхиме идет по живым
клеткам . Вода передвигается осмотическим путем по клеткам мезофилла листа до последних клеток, граничащих с межклеточниками . Этот отрезок пути, так же как и первый, очень короткий.

Если срезанную ветку растения герметически закрепить в стеклянной трубке, заполненной водой, и нижний конец ее опустить в сосуд со ртутью, то при испарении веткой воды ртуть в трубке будет подниматься.

Из этого опыта ясно, что передвижение воды по растению обусловлено главным образом транспирацией , (подробнее: ), а не только корневым давлением.

При испарении воды с поверхности листьев в клетках возникает сосущая сила. Величина ее тем больше, чем меньше воды остается в клетках листа. Эта возникающая сосущая сила поддерживает постоянное передвижение воды в растении.


Транспорт веществ в растениях

Силы, приводящие воду в движение

Таким образом, силы, приводящие воду в движение , находятся по концам проводящей системы: нагнетающий воду корень, работа которого получила название нижнего концевого двигателя , и сила присасывания воды листьями - верхний концевой двигатель .

Оба двигателя действуют в одном направлении и могут заменять и дополнять друг друга. Во время сильной инсоляции летом и при, засухе водоснабжение растения идет за счет присасывающего действия транспирации.

Корневое давление

Когда же почва богата водой, а воздух водяными парами, подъем воды обеспечивается силой корневого давления, (подробнее: ). Следовательно, в зависимости от условий внешней среды главная роль принадлежит то одному, то другому концевому двигателю.

Водные нити не рвутся под влиянием своей тяжести, несмотря на то, что при сильной они находятся в состоянии натяжения. Это объясняется силой сцепления молекул воды, достигающей 300-350 атм, а так как в сосудах нет воздуха, то целостность водного тока не прерывается.

Скорость водного тока

Скорость водного тока зависит от строения проводящих воду элементов. Вода быстрее передвигается по сосудам, причем скорость движения ее зависит от диаметра сосудов: чем он меньше, тем медленнее будет передвигаться вода.

Движение воды в растениях происходит благодаря работе двух концевых двигателей, верхнего и нижнего, и сил сцепления, обеспечивающих целостность водных нитей.

Путь воды в растении распадается на три различ­ные по физиологии, строению и протяженности части: по живым клеткам корня; по мертвым элементам ксилемы корня, стебля, черешка и жилок; по живым клеткам листа до испаряющей поверх­ности.

Большая часть этого пути приходится на долю водопроводящей системы, состоящей из мертвых по­лых сосудов у покрытосеменных и трахеид у голосе­менных растений. У травянистых растений эта часть водного пути достигает десятков сантиметров, а у дре­весных - многих метров.

Передвижение воды по сосудам ксилемы, длина которых может достигать нескольких десятков санти­метров, происходит довольно легко. Путь через трахеи­ды более трудный: от одной трахеиды к другой вода проходит через окаймленные поры; очевидно, что дви­жение воды через них испытывает большее сопротив­ление, чем через сосуды. Измерения показывают, что у лиственных древесных растений проводимость древе­сины в 3 - 6 раз выше, чем у хвойных. В целом этот путь вода преодолевает куда легче, чем первый и третий через несколько миллиметров или даже долей милли­метров живых клеток - от корневых волосков до сосу­дов центрального цилиндра и от сосудов, расположен­ных в жилках листа, до испаряющих клеток мезофилла.

По сосудам и трахеидам вода передвигается, как по полым трубкам, подчиняясь общим гидродинамичес­ким законам, по живым же клеткам корня и листа - осмотическим путем, с помощью разности сосущих сил соседних клеток в правильно возрастающей последо­вательности. Значительное сопротивление току воды при переходе ее от одной живой клетки к другой дела­ет этот способ совершенно непригодным для передви­жения воды на большое расстояние. Поэтому возник­новение трахеид у папоротниковидных растений яви­лось важным этапом в эволюции растительного мира. Еще более совершенной стала водопроводящая систе­ма с появлением настоящих сосудов у покрытосемен­ных растений.

Через растение перекачивается огромное количество воды. С 1 га посевов пшеницы за лето испаряется около 2 тыс. т, клевера - 7,5, капусты - 8 тыс., Т.е. если собрать всю воду, расходуемую 1 га клевера или капу­сты, то получится водный бассейн площадью 1 га и глубиной 75- 80 см. Еловые молодняки южной тайги за год тратят 4,5 тыс. т воды с 1 га лесной площади, сосно­вые - 5,0, ольховые - до 11 тыс. т.

Видно, что леса расходуют не меньше, а даже боль­ше, чем некоторые сельскохозяйственные культуры. эти колоссальные расходы восполняются за счет деятель­ности корневых систем, с достаточной быстротой вса­сывающих воду из почвы. На этом основана осушаю­щая роль леса в условиях заболачивающихся лесных почв. Поддержанию водного баланса служат и хорошо развитая проводящая воду система, без задержки пода­ющая воду к листьям, а также наличие покровных тка­ней, защищающих растение от излишней потери воды.

Каковы те силы, которые осуществляют непрерыв­ный ток воды от корней через стебель и листья? У тра­вянистых низкорослых растений механизм перетекания ксилемного сока понять легко. Корневое давление наг­нетает воду в сосуды центрального цилиндра корня, а сосущие силы, возникающие в листьях благодаря про­цессу транспирации, притягивают эту воду. Тем самым создается постоянный ток воды по всему растению.

Процесс подъема воды от корней до листьев носит название восходящего тока, в отличие от нисходящего тока органических веществ от листьев к корням. Кор­невое давление, создающееся благодаря метаболизму корневых окончаний, получило название нижнего концевого двигателя водного тока. Притягивающие же воду сосущие силы листьев называют верхним конце­вым двигателем водного тока.

Труднее объяснить непрерывность водного столба у гигантов растительного мира - эвкалиптов, секвой и некоторых других древесных растений, высота кото­рых достигает 140 м. Наши обычные деревья также имеют довольно большие размеры: береза - до 25 м, дуб - 40 м, сосна и ель - до 50 м. К этому следует добавить и значительную протяженность водопроводя­щей системы корней.

Водный ток испытывает и преодолевает силу зем­ного притяжения, силу тяжести. В силу этого, напри­мер, обычные поршневые насосы не могут поднять воду с глубины более 10 м, ибо этот 10-метровый столб воды соответствует давлению в 1 атм. Кроме того, движение воды по ксилеме испытывает довольно значительное сопротивление, особенно у представителей голосемен­ных древесных растений.

Объяснение того, что водный столб протяженно­стью многие десятки метров не разрывается, находим в теории сцепления (когезии) и смачивания стенок со­судов и трахеид водой (адгезии). Действительно, меж­ду молекулами передвигающейся воды существуют значительные силы сцепления, заставляющие эти мо­лекулы следовать друг за другом. Этому способствует и то, что водопроводящие элементы представляют как бы единое целое с водным потоком, так как стенки их полностью смочены, насыщены водой. В них нет воздуха. В таком состоянии они оказывают мини­мальное сопротивление движущемуся потоку. Кро­ме того, само строение сосудов не способствует пе­редвижению пузырьков воздуха из одного сосуда в другой.

Все это весьма сильно отличает условия, создаю­щиеся в дереве, от условий в поршневых насосах. В последних между стенками цилиндра и поршня посто­янно появляются пузырьки воздуха, нарушающие це­лостность водного столба. Происходит обрыв этого столба при подъеме на высоту более 10 м.

Для того чтобы поднять воду на высоту 100 м, необхо­димо наличие сосущих сил в кроне дерева порядка 30 - 35 атм: на преодоление силы тяжести - 10 атм, сопро­тивления фильтрации через поперечные стенки сосу­дов - 20 - 25 атм. В природной обстановке леса такие величины часто регистрируются экспериментально. Поэтому с чисто физической точки зрения представля­ется возможным объяснить подъем воды на высоту 100 м и более.

В процесс е транспирации в листьях деревьев воз­никают сосущие силы, достигающие десятков атмос­фер. Листья насасывают воду из стебля, вследствие чего в сосудах возникает отрицательное давление ­разрежение. Такое состояние можно наблюдать при помощи несложных приборов: в теплый летний день при интенсивной потере воды стволы деревьев умень­шаются в диаметре. Другой способ заключается в том, что при срезании интенсивно транспирирующей вет­ки в подкрашенной воде отмечается мгновенное про­никновение краски через поверхность среза благодаря расширению сосудов.

В зависимости от анатомического строения древе­сины линейная скорость восходящего тока колеблется от 1 - 6 м/ч у хвойных и рассеянно-сосудистых дре­весных пород до 25 - 60 м/ч у кольцесосудистых. Та­кая скорость зарегистрирована летом в полдень. Ско­рость передвижения воды по дереву в течение суток изменяется и в основном соответствует интенсивности транспирации. Существует и светозависимый восходящий водный поток в растениях, тесно не связанный с транспирационной активностью (В.Г. Реуцкий).

В самом дереве быстрее всего вода передвигается в стволе и медленнее - в наиболее молодых ветвях. Среднее положение по этому показателю занимают старые ветви.

Особенности водного тока по стволу дерева:

· С помощью изотопной техники и введения в ствол красок было показано, что у большинства древесных растений водный ток в стволе передвигается по спирали. Это тесно связано с макростроением древесного ствола, что затрудняет ответ на вопрос, какая часть корневой системы питает водой ту или иную сторону кроны дерева.

· Передвижение воды в радиальном направлении осуществляется медленнее и происходит через поры на стенках сосудов и трахеид. Оно имеет зна­чение в поддержании нормальной оводненности живых элементов древесины и коры.

· Неравномерность водного тока. Далеко не вся дре­весина служит местом проведения воды. У ядро­вых древесных растений (сосна, дуб) для этого слу­жит только заболонь. При этом более активны в проведении воды последние годичные слои древе­сины. Это объясняется тем, что только эти слои переходят в древесину однолетних ветвей, тесно связанную с водопроводящей системой листьев. У хвойных, в частности у ели, проводящие пучки хвои сообщаются, по-видимому, с несколькими годич­ными кольцами. Старые годичные кольца просто не достигают кроны, они выклиниваются по мере увеличения высоты дерева. У ряда древесных по­род (акация белая, фисташка, ясень) вода прово­дится всего лишь 1 - 3 последними годичными сло­ями заболони. Такая же картина наблюдается и у заболонных, и у спелодревесных пород (осина, бе­реза, липа), но у них число годичных слоев, прово­дящих воду, несколько больше.

· Можно назвать и такую особенность восходящего тока в стволе дерева, как его изолированность. В общих чертах она присуща и травянистым расте­ниям. Тем не менее, у древесных растений она выражена в большей степени. Проводящая воду древесина ствола отделена от внешней среды не только живыми клетками камбия и флоэмы, но и толстой пробкой или коркой, ограничивающих связь древесины с воздухом атмосферы.

· Такое свойство восходящего тока, как обратu­мость, иногда наблюдается в природе у ряда дре­весных пород, в том числе у некоторых хвойных (ели, пихты), при укоренении нижних ветвей, со­прикасающихся с почвой, или верхушек у выва­ленных деревьев. Ток воды здесь идет в обратном направлении - от морфологически верхнего кон­ца к морфологически нижнему концу.

Восходящий ток обеспечивает все живые клетки растения водой и минеральными элементами. Очень важна роль восходящего тока и в обеспечении живых клеток корней, ствола и ветвей кислородом, ибо проницаемость тканей коры, камбия, древесины для газов весьма низка. Этот растворенный в воде восходящего тока кислород идет на осуществление процесса дыха­ния живых элементов дерева.

Восходящий ток влияет и на оводненность тканей, в частности древесины ствола. В молодом возрасте до образования ядра наибольшей влажностью обладает древесина хвойных пород. Это различие, очевидно, свя­зано с отсутствием у них по сравнению с лиственны­ми породами либриформа.

Резкие изменения оводненности древесины на­блюдаются течение года. Так, у хвойных древесных растений самая низкая влажность отмечается в лет­ние месяцы, а самая высокая - зимой. В поздневе­сеннее и раннеосеннее время влажность древесины занимает среднее положение. Влажность ядровой древесины практически остается неизменной и самой низкой. У лиственных древесных пород отмечено два периода пониженной влажности - летний и во вто­рой половине зимы и два повышенной - весенний во время сокодвижения и зимний - в первой половине зимы.

Влажность древесины молодых деревьев несколь­ко выше, а амплитуда колебаний ее больше, чем у ста­рых деревьев. Содержание воды в древесине меняет­ся и в течение летних суток: наиболее высокое рано утром, а низкое - в полдень.

Вода, запасенная в середине ствола, способна пе­редвигаться в молодые побеги, что особенно важно при отсутствии доступной для растений воды в почве (за­суха, морозы). Например, 100- летняя сосна может пере­носить засушливый период за счет внутренних запа­сов воды в стволе в течение целого месяца.

Перетекающая по растению вода отличается от метаболической воды, которая непосредственно ис­пользуется в различных процессах обмена веществ. Вода постоянно обменивается в клетках растений. С по­мощью современной техники, в частности изотопной, удалось показать, что самый быстрый обмен внутри­тканевой воды на внешнюю воду происходит в корнях растений, а самый медленный - в стеблях. Промежу­точное положение занимают листья.


Похожая информация.


Сначала, прочитав учебник, энциклопедии и статьи в Интернете, я узнала, как выглядит строение цветочных растений

Органы цветочного растения - побег, корень, цветки, плоды с семенами. И все они состоят из различных видов ткани: образовательной, покровной, механической, проводящей, основной. Все эти ткани выполняют различные функции в жизни растений.

Транспорт воды в цветочных растениях

Чтобы растение могло расти, должны выполняться определенные условия: свет, тепло, вода, питание. Активное перемещение веществ у растений происходит по проводящим тканям. Вода и растворенные в ней минеральные вещества передвигаются в растении от корней к цветку по сосудам. Вода поступает в растение через корневые волоски, затем вода по сосудам корня под давлением поднимается. Попав в листья, вода испаряется с поверхности клеток и в виде пара выходит в атмосферу. Этот процесс обеспечивает непрерывный восходящий ток воды по растению.

Но какие силы обеспечивают движение тока воды вверх по стеблю в стакане с водой? Можно предположить, что вода выталкивается снизу или ее тянут сверху. На небольшие расстояния транспорт веществ обеспечивают физические процессы диффузии. Молекулы воды передвигаются из той области, где их концентрация высока, туда, где их концентрация низка.

Поданная корнем вода быстро перемеща-ется по растению к листьям. Возникает вопрос, как передвигается вода по растению ? Поглощенная корневыми волосками вода проходит рас-стояние в несколько миллиметров по живым клеткам, а затем уже поступает в мертвые сосуды ксилемы.

Передвижение воды по живым клеткам возмож-но благодаря наличию сосущей силы , возрастающей от корневого волоска к живым клеткам, прилегающим к сосудам ксилемы. Такое же распределение сосущей силы имеется и в живых клетках листа (рис. 124).

При передвижении воды по живым клеткам лис-та сосущая сила каждой последующей клетки должна отличаться на 0,1 атм. В одном из опы-тов удалось установить, что в листе плюща в третьей клетке от жилки имелась сосущая сила, равная 12,1 атм, а в 210-й клетке — 32,6 атм. Та-ким образом, на преодоление сопротивления 207 клеток разница в сосущей силе составила 20,5 атм, т. е. как раз около 0,1 атм на каж-дую клетку. Из этих данных следует, что сопро-тивление осмотическому передвижению воды по живым клеткам равняется около 1 атм на 1 мм проходимого водой пути. Отсюда становится понят-ным, почему растения, не имеющие сосудов (мхи, лишайники), не достигают больших размеров. Только в связи с появлением трахеид (папоротникообразные и голосеменные) и сосудов (по-крытосеменные) в процессе эволюции создалась возможность для растения достигать высоты в несколько десятков и даже свыше сотни метров (эвкалип-ты , секвойи).

Только небольшую часть своего пути в растении вода проходит по живым клеткам — в корнях, а затем в листьях. Большую часть пути вода проходит по сосудам корня, стебля и листа. Испарение воды с поверх-ности листьев создает наличие сосущей силы в клетках листа и корня и поддерживает постоянное передвижение воды по растению. Поэтому листья растений и получили название верхнего концевого двигате-ля , в отличие от корневой системы растения, — нижнего конце-вого двигателя , который нагнетает воду в растение.

О значении передвижения воды по мертвым клеткам древесины — сосу-дам и трахеидам — можно судить по такому опыту.

Если мы срежем ветку какого-либо травянистого растения и поставим ее в воду, то вода будет поступать к листьям, передвигаясь по сосудам бла-годаря испарению с их поверхности. Если закупорить полости сосудов погружением ветви в расплавленную желатину, а затем, когда желатина втянется в сосуды и застынет, соскоблить ее с поверхности среза и опустить ветку в воду, то листья быстро завянут. Этот опыт показывает, что по жи-вым клеткам паренхимы вода не может быстро перемещаться к листьям.

Испаряя воду с поверхности своих листьев, растения автоматически тянут воду по сосудам. Чем интенсивнее транспирация, тем сильнее сосет воду растение. Присасывающее действие транспирации легко обнаружить, если срезанную ветку герметически укрепить в верхнем конце стеклянной трубки, наполненной водой, нижний конец которой погружен в чашку со ртутью. По мере испарения воды на ее место в трубку будет втягиваться ртуть (рис. 125). Конец поднятию ртути кладет воздух, выделяющийся из межклетников, который прерывает сообщение сосудов с водой. Обычно, однако, в подобном опыте удается поднять ртуть на значительную высоту. Работа верхнего концевого двигателя играет значительно большую роль для растения по сравнению с нижним, так как она идет автоматически, за счет энергии солнечных лучей, нагре-вающих лист и повышающих испарение. Работа нижнего концевого двигателя связана с затратой энергии за счет расходования накопленных в процессе фотосинтеза ассимилятов. Однако вес-ной, когда еще не распустилась листва, или во влажных тенистых местообитани-ях, где транспирация очень невелика, основную роль в передвижении воды играет корневая система, нагнетающая воду в растение. Материал с сайта

Присасывающая сила листьев настолько велика, что если перерезать облиственную ветку, то наблюдается не вытекание, а заса-сывание воды. В высоких деревьях это сосание воды листьями передается вниз на десятки метров. В то же вре-мя известно, что любой всасывающий насос не может поднять воду на вы-соту, превышающую 10 м, так как вес этого водяного столба будет соответ-ствовать атмосферному давлению и им уравновешиваться. Наблюдаемое раз-личие между всасывающим насосом и стеблем растения зависит от сцепле-ния воды со стенками сосудов. Опыты с кольцом спорангия папоротника показали, что сила сцепления воды здесь составляет 300—350 атм. Как известно, кольцо на спорангии папоротника состоит из мертвых клеток, у которых внутренние и боковые стенки утолще-ны, а наружные тонки. При созревании спорангиев клетки эти, наполнен-ные водой, теряют ее и уменьшаются в размерах. При этом происходит втягивание внутрь тонкой стенки и сближение концов толстых стенок меж-ду собой. Получается как бы натянутая пружина, стремящаяся оторвать от стенок воду. Когда происходит отрыв воды, то пружина распрямляется и споры с силой разбрасываются из спорангия, как из метательной машины. Вызвать этот отрыв воды можно погружением спорангиев в концентрирован-ные растворы некоторых солей. Измерения показали, что сила, производя-щая отрыв воды, оказалась равной примерно 350 атм. Из изложенного понятно, что сплошные водяные столбы, заполняющие сосуды, крепко спа-яны благодаря силе сцепления. Вес столба воды в 100 м высоты соответству-ет всего лишь 10 атм. Таким образом, огромная сила сцепления позволяет воде в стеблях растений подниматься на высоту, значительно превышающую барометрическую. Корневое давление и присасывающее действие листьев двигают водяной ток на значительную высоту. Большое значение при этом имеют также поперечные перегородки в сосудах, так как воздух, попадая в сосуды, изолируется и из общей системы водоснабжения исключаются лишь небольшие участки.

Скорость движения воды по сосудам сравнительно невелика. Для лиственных древес-ных пород она составляет в среднем 20 см 3 в час на 1 см 2 поперечного се-чения древесины, а для хвойных всего 5 см 3 в час. В то же время кровь по артериям движется со скоростью 40—50 см 3 в секунду, а вода по водопровод-ным магистралям 100 см 3 на 1 см 2 сечения в секунду.