В масштабах космоса планеты — всего лишь песчинки, играющие незначительную роль в грандиозной картине развития природных процессов. Однако это наиболее разнообразные и сложные объекты Вселенной. Ни у одного из других типов небесных тел не наблюдается подобного взаимодействия астрономических, геологических, химических и биологических процессов. Ни в одном из иных мест в космосе не может зародиться жизнь в том виде, как мы ее знаем. Только в течение последнего десятилетия астрономы обнаружили более 200 планет.

Формирование планет, издавна считавшееся спокойным и стационарным процессом, в действительности оказалось весьма хаотическим.

Поразительное разнообразие масс, размеров, состава и орбит заставило многих задуматься об их происхождении. В 1970-е гг. формирование планет считалось упорядоченным, детерминированным процессом — конвейером, на котором аморфные газово-пылевые диски превращаются в копии Солнечной системы. Но теперь нам известно, что это хаотичный процесс, предполагающий различный результат для каждой системы. Родившиеся планеты выжили в хаосе конкурирующих механизмов формирования и разрушения. Многие объекты погибли, сгорев в огне своей звезды, или были выброшены в межзвездное пространство. У нашей Земли могли быть давно потерянные близнецы, странствующие ныне в темном и холодном космосе.

Наука о формировании планет лежит на стыке астрофизики, планетологии, статистической механики и нелинейной динамики. В целом планетологи развивают два основных направления. Согласно теории последовательной аккреции, крошечные частицы пыли слипаются, образуя крупные глыбы. Если такая глыба притянет к себе много газа, она превращается в газовый гигант, как Юпитер, а если нет — в каменистую планету типа Земли. Основные недостатки данной теории — медлительность процесса и возможность рассеяния газа до формирования планеты.

В другом сценарии (теория гравитационной неустойчивости) утверждается, что газовые гиганты формируются путем внезапного коллапса, приводящего к разрушению первичного газово-пылевого облака. Данный процесс в миниатюре копирует формирование звезд. Но гипотеза эта весьма спорная, т. к. предполагает наличие сильной неустойчивости, которая может и не наступить. К тому же астрономы обнаружили, что наиболее массивные планеты и наименее массивные звезды разделены «пустотой» (тел промежуточной массы просто не существует). Такой «провал» свидетельствует о том, что планеты — это не просто маломассивные звезды, но объекты совершенно иного происхождения.

Несмотря на то что ученые продолжают спорить, большинство считает более вероятным сценарий последовательной аккреции. В данной статье я буду опираться именно на него.

1. Межзвездное облако сжимается

Время: 0 (исходная точка процесса формирования планет)

Наша Солнечная система находится в Галактике, где около 100 млрд звезд и облака пыли и газа, в основном — остатки звезд предыдущих поколений. В данном случае пыль — это всего лишь микроскопические частицы водяного льда, железа и других твердых веществ, сконденсировавшиеся во внешних, прохладных слоях звезды и выброшенные в космическое пространство. Если облака достаточно холодные и плотные, они начинают сжиматься под действием силы гравитации, образуя скопления звезд. Такой процесс может длиться от 100 тыс. до нескольких миллионов лет.

Каждую звезду окружает диск из оставшегося вещества, которого достаточно для образования планет. Молодые диски в основном содержат водород и гелий. В их горячих внутренних областях частицы пыли испаряются, а в холодных и разреженных внешних слоях частицы пыли сохраняются и растут по мере конденсации на них пара.

Астрономы обнаружили много молодых звезд, окруженных такими дисками. Звезды возрастом от 1 до 3 млн лет обладают газовыми дисками, в то время как у тех, что существуют более 10 млн лет, наблюдаются слабые, бедные газом диски, поскольку газ «выдувает» из него либо сама новорожденная звезда, либо соседние яркие звезды. Этот диапазон времени как раз и есть эпоха формирования планет. Масса тяжелых элементов в таких дисках сравнима с массой данных элементов в планетах Солнечной системы: довольно сильный аргумент в защиту того факта, что планеты образуются из таких дисков.

Результат: новорожденная звезда окружена газом и крошечными (микронного размера) частицами пыли.

Клубки космической пыли

Даже гигантские планеты начинались со скромных тел — микронных пылинок (пепел давно умерших звезд), плавающих во вращающемся газовом диске. С удалением от новорожденной звезды температура газа падает, проходя через «линию льда», за которой вода замерзает. В нашей Солнечной системе эта граница отделяет внутренние твердые планеты от внешних газовых гигантов.

  1. Частицы сталкиваются, слипаются и растут.
  2. Малые частицы увлекает газ, но те, что больше миллиметра, тормозятся и по спирали движутся к звезде.
  3. У линии льда условия таковы, что сила трения меняет направление. Частицы стремятся слипнуться и легко объединяются в более крупные тела — планетезимали.

2. Диск приобретает структуру

Время: около 1 млн лет

Частицы пыли в протопланетном диске, хаотически двигаясь вместе с потоками газа, сталкиваются друг с другом и при этом иногда слипаются, иногда разрушаются. Пылинки поглощают свет звезды и переизлучают его в длинноволновом инфракрасном диапазоне, передавая тепло в самые темные внутренние области диска. Температура, плотность и давление газа в целом снижаются с удалением от звезды. Из-за баланса давления, гравитации и центробежной силы скорость вращения газа вокруг звезды меньше, чем у свободного тела на таком же расстоянии.

В результате пылинки размером более нескольких миллиметров опережают газ, поэтому встречный ветер тормозит их и вынуждает по спирали опускаться к звезде. Чем крупнее становятся эти частицы, тем быстрее они движутся вниз. Глыбы метрового размера могут сократить свое расстояние от звезды вдвое всего за 1000 лет.

Приближаясь к звезде, частицы нагреваются, и постепенно вода и другие вещества с низкой температурой кипения, называемые летучими веществами, испаряются. Расстояние, на котором это происходит, — так называемая «линия льда», — составляет 2-4 астрономических единицы (а.е.). В Солнечной системе это как раз нечто среднее между орбитами Марса и Юпитера (радиус орбиты Земли равен 1 а.е.). Линия льда делит планетную систему на внутреннюю область, лишенную летучих веществ и содержащую твердые тела, и внешнюю, богатую летучими веществами и содержащую ледяные тела.

На самой линии льда накапливаются молекулы воды, испарившиеся из пылинок, что служит пусковым механизмом для целого каскада явлений. В этой области происходит разрыв в параметрах газа, и возникает скачок давления. Баланс сил заставляет газ ускорять свое движение вокруг центральной звезды. В результате попадающие сюда частицы оказываются под влиянием не встречного, а попутного ветра, подгоняющего их вперед и останавливающего их миграцию внутрь диска. А поскольку из его внешних слоев продолжают поступать частицы, линия льда превращается в полосу его скопления.

Скапливаясь, частицы сталкиваются и растут. Некоторые из них прорываются за линию льда и продолжают миграцию внутрь; нагреваясь, они покрываются жидкой грязью и сложными молекулами, что делает их более липкими. Некоторые области настолько заполняются пылью, что взаимное гравитационное притяжение частиц ускоряет их рост.

Постепенно пылинки собираются в тела километрового размера, называемые планетезималями, которые на последней стадии формирования планет сгребают почти всю первичную пыль. Увидеть сами планетезимали в формирующихся планетных системах трудно, но астрономы могут догадываться об их существовании по обломкам их столкновений (см.: Ардила Д. Невидимки планетных систем // ВМН, № 7, 2004).

Результат: множество километровых «строительных блоков», называемых планетезималями.

Рост олигархов

Миллиарды километровых планетезималей, сформировавшихся на стадии 2, собираются затем в тела размером с Луну или Землю, называемые зародышами. Небольшое их количество господствует в своих орбитальных зонах. Эти «олигархи» среди зародышей борются за оставшееся вещество

3. Формируются зародыши планет

Время: от 1 до 10 млн лет

Покрытые кратерами поверхности Меркурия, Луны и астероидов не оставляют сомнения в том, что в период формирования планетные системы похожи на стрелковый тир. Взаимные столкновения планетезималей могут стимулировать как их рост, так и разрушение. Баланс между коагуляцией и фрагментацией приводит к распределению по размерам, при котором мелкие тела в основном отвечают за площадь поверхности системы, а крупные определяют ее массу. Орбиты тел вокруг звезды вначале могут быть эллиптическими, но со временем торможение в газе и взаимные столкновения превращают орбиты в круговые.

Вначале рост тела происходит в силу случайных столкновений. Но чем больше становится планетезималь, тем сильнее ее гравитация, тем интенсивнее она поглощает своих маломассивных соседей. Когда массы планетезималей становятся сравнимы с массой Луны, их гравитация возрастает настолько, что они встряхивают окружающие тела и отклоняют их в стороны еще до столкновения. Этим они ограничивают свой рост. Так возникают «олигархи» — зародыши планет со сравнимыми массами, конкурирующие друг с другом за оставшиеся планетезимали.

Зоной питания каждого зародыша служит узкая полоса вдоль его орбиты. Рост прекращается, когда зародыш поглотит большую часть планетезималей из своей зоны. Элементарная геометрия показывает, что размер зоны и продолжительность поглощения возрастают с удалением от звезды. На расстоянии 1 а.е. зародыши достигают массы 0,1 массы Земли в течение 100 тыс. лет. На расстоянии 5 а.е. они достигают четырех земных масс за несколько миллионов лет. Зародыши могут стать еще больше вблизи линии льда или на краях разрывов диска, где концентрируются планетезимали.

Рост «олигархов» заполняет систему излишком тел, стремящихся стать планетами, но лишь немногим это удается. В нашей Солнечной системе планеты хотя и распределены по большому пространству, но они близки друг к другу насколько это возможно. Если между планетами земного типа поместить еще одну планету с массой Земли, то она выведет из равновесия всю систему. То же самое можно сказать и о других известных системах планет. Если вы видите чашку кофе, заполненную до краев, то можете быть почти уверены, что кто-то ее переполнил и разлил немного жидкости; маловероятно, что можно до краев наполнить емкость, не разлив ни капли. Настолько же вероятно, что планетные системы в начале своей жизни обладают большим количеством вещества, чем в конце. Некоторые объекты выбрасываются из системы прежде, чем она достигнет равновесия. Астрономы уже наблюдали свободно летающие планеты в молодых звездных скоплениях.

Результат: «олигархи» — зародыши планет с массами в диапазоне от массы Луны до массы Земли.

Гигантский скачок для планетной системы

Формирование такого газового гиганта, как Юпитер, — важнейший момент в истории планетной системы. Если такая планета сформировалась, она начинает управлять всей системой. Но чтобы это произошло, зародыш должен собирать газ быстрее, чем он движется по спирали к центру.

Формированию гигантской планеты мешают волны, которые она возбуждает в окружающем газе. Действие этих волн не уравновешивается, тормозит планету и вызывает ее миграцию в сторону звезды.

Планета притягивает газ, но он не может осесть, пока не остынет. А за это время она может довольно близко по спирали подойти к звезде. Гигантская планета может сформироваться далеко не во всех системах

4. Рождается газовый гигант

Время: от 1 до 10 млн лет

Вероятно, Юпитер начинался с зародыша, сравнимого по размеру с Землей, а затем накопил еще около 300 земных масс газа. Такой внушительный рост обусловлен различными конкурирующими механизмами. Гравитация зародыша притягивает газ из диска, но сжимающийся к зародышу газ выделяет энергию, и чтобы осесть, он должен охлаждаться. Следовательно, скорость роста ограничена возможностью охлаждения. Если оно происходит слишком медленно, звезда может сдуть газ обратно в диск прежде, чем зародыш образует вокруг себя плотную атмосферу. Самым узким местом в отводе тепла является перенос излучения сквозь внешние слои растущей атмосферы. Поток тепла там определяется непрозрачностью газа (в основном зависит от его состава) и градиентом температуры (зависит от начальной массы зародыша).

Ранние модели показали, что зародыш планеты для достаточно быстрого охлаждения должен иметь массу не менее 10 масс Земли. Такой крупный экземпляр может вырасти лишь вблизи линии льда, где ранее собралось много вещества. Возможно, поэтому Юпитер расположен как раз за этой линией. Крупные зародыши могут образоваться и в любом другом месте, если диск содержит больше вещества, чем обычно предполагают планетологи. Астрономы уже наблюдали немало звезд, диски вокруг которых в несколько раз плотнее предполагавшихся ранее. Для крупного образца перенос тепла не представляется серьезной проблемой.

Другой фактор, затрудняющий рождение газовых гигантов, — движение зародыша по спирали к звезде. В процессе, называемом миграцией I типа, зародыш возбуждает волны в газовом диске, которые в свою очередь гравитационно воздействуют на его движение по орбите. Волны следуют за планетой, как тянется за лодкой ее след. Газ на внешней стороне орбиты вращается медленнее зародыша и влечет его назад, тормозя движение. А газ внутри орбиты вращается быстрее и тянет вперед, ускоряя его. Внешняя область обширнее, поэтому она выигрывает битву и заставляет зародыш терять энергию и опускаться к центру орбиты на несколько астрономических единиц за миллион лет. Эта миграция обычно прекращается у линии льда. Здесь встречный газовый ветер превращается в попутный и начинает подталкивать зародыш вперед, компенсируя его торможение. Возможно, еще и поэтому Юпитер находится именно там, где он находится.

Рост зародыша, его миграция и потеря газа из диска происходят почти в одном и том же темпе. Какой процесс победит — зависит от везения. Возможно, несколько поколений зародышей пройдут через процесс миграции, не будучи способными завершить свой рост. За ними из внешних областей диска к его центру движутся новые партии планетезималей, и это повторяется до тех пор, пока в конце концов не образуется газовый гигант, или же пока весь газ не рассосется, и газовый гигант уже не сможет сформироваться. Астрономы открыли планеты типа Юпитера примерно у 10% исследованных солнцеподобных звезд. Ядра таких планет могут быть редкими зародышами, выжившими из многих поколений — последними из могикан.

Итог всех этих процессов зависит от начального состава вещества. Примерно треть звезд, богатых тяжелыми элементами, имеет планеты типа Юпитера. Возможно, у таких звезд были плотные диски, позволившие сформироваться массивным зародышам, у которых не было проблем с теплоотводом. И, напротив, вокруг звезд, бедных тяжелыми элементами, планеты формируются редко.

В некий момент масса планеты начинает расти чудовищно быстро: за 1000 лет планета типа Юпитера приобретает половину своей конечной массы. При этом она выделяет так много тепла, что сияет почти как Солнце. Процесс стабилизируется, когда планета становится настолько массивной, что поворачивает миграцию I типа «с ног на голову». Вместо того чтобы диск менял орбиту планеты, сама планета начинает изменять движение газа в диске. Газ внутри орбиты планеты вращается быстрее нее, поэтому ее притяжение тормозит газ, вынуждая его падать в сторону звезды, т. е. от планеты. Газ же вне орбиты планеты вращается медленнее, поэтому планета ускоряет его, заставляя двигаться наружу, опять же от планеты. Таким образом, планета создает разрыв в диске и уничтожает запас строительного материала. Газ пытается его заполнить, но компьютерные модели показывают, что планета выигрывает битву, если при расстоянии в 5 а.е. ее масса превышает массу Юпитера.

Эта критическая масса зависит от эпохи. Чем раньше формируется планета, тем больше будет ее рост, поскольку в диске еще много газа. У Сатурна масса меньше, чем у Юпитера, просто потому, что он сформировался на несколько миллионов лет позже. Астрономы обнаружили дефицит планет с массами от 20 масс Земли (это масса Нептуна) до 100 земных масс (масса Сатурна). Это может стать ключом к восстановлению картины эволюции.

Результат: Планета размером с Юпитер (или ее отсутствие).

5. Газовый гигант становится неусидчивым

Время: от 1 до 3 млн лет

Как ни странно, многие внесолнечные планеты, открытые за последние десять лет, обращаются вокруг своей звезды на очень близком расстоянии, гораздо ближе, чем Меркурий — вокруг Солнца. Эти так называемые «горячие Юпитеры» сформировались не там, где они находятся сейчас, т. к. орбитальная зона питания была бы слишком мала для поставки необходимого вещества. Возможно, для их существования нужна трехступенчатая последовательность событий, которая по какой-то причине не реализовалась в нашей Солнечной системе.

Во-первых, газовый гигант должен формироваться во внутренней части планетной системы, вблизи линии льда, пока в диске еще достаточно газа. Но для этого в диске должно быть много и твердого вещества.

Во-вторых, планета-гигант должна переместиться к месту своего нынешнего расположения. Миграция I типа не может обеспечить этого, т. к. она действует на зародыши еще до того, как они наберут много газа. Но возможна и миграция II типа. Формирующийся гигант создает разрыв в диске и сдерживает течение газа через свою орбиту. В этом случае он должен бороться с тенденцией турбулентного газа распространяться в смежные области диска. Газ никогда не перестанет сочиться в разрыв, и его диффузия к центральной звезде заставит планету терять орбитальную энергию. Этот процесс довольно медленный: нужно несколько миллионов лет для перемещения планеты на несколько астрономических единиц. Поэтому планета должна начать формироваться во внутренней части системы, если в итоге ей предстоит выйти на орбиту вблизи звезды. Когда эта и другие планеты продвигаются внутрь, они толкают перед собой оставшиеся планетезимали и зародыши, возможно, создавая «горячие Земли» на еще более близких к звезде орбитах.

В-третьих, что-то должно остановить движение, прежде чем планета упадет на звезду. Это может быть магнитное поле звезды, расчищающее от газа пространство вблизи звезды, а без газа движение прекращается. Возможно, планета возбуждает приливы на звезде, а они в свою очередь замедляют падение планеты. Но эти ограничители могут и не срабатывать во всех системах, поэтому многие планеты могут продолжать свое движение к звезде.

Результат: планета-гигант на близкой орбите («горячий Юпитер»).

Как обнять звезду

Во многих системах образуется гигантская планета и начинает приближаться по спирали к звезде. Происходит это потому, что газ в диске теряет энергию из-за внутреннего трения и оседает к звезде, увлекая за собой планету, которая со временем оказывается так близко к звезде, что та стабилизирует ее орбиту

6. Появляются и другие планеты-гиганты

Время: от 2 до 10 млн лет

Если удалось сформироваться одному газовому гиганту, то он способствует рождению следующих гигантов. Многие, а возможно и большинство известных планет-гигантов имеют близнецов сравнимой массы. В Солнечной системе Юпитер помог Сатурну сформироваться быстрее, чем это произошло бы без его помощи. Кроме того, он «протянул руку помощи» Урану и Нептуну, без чего они не достигли бы своей нынешней массы. На их расстоянии от Солнца процесс формирования без посторонней помощи шел бы очень медленно: диск рассосался бы еще до того, как планеты успели бы набрать массу.

Первый газовый гигант оказывается полезным по нескольким причинам. У внешней кромки образованного им разрыва вещество концентрируется, в общем, по той же причине, что и на линии льда: перепад давления заставляет газ ускоряться и действовать как попутный ветер на пылинки и планетезимали, останавливая их миграцию из внешних областей диска. К тому же гравитация первого газового гиганта часто отбрасывает соседние с ним планетезимали во внешнюю область системы, где из них формируются новые планеты.

Второе поколение планет формируется из вещества, собранного для них первым газовым гигантом. При этом большое значение имеет темп: даже небольшая задержка во времени может существенно изменить результат. В случае Урана и Нептуна аккумуляция планетезималей была чрезмерной. Зародыш стал слишком большим, 10-20 земных масс, что отсрочило начало аккреции газа до момента, когда в диске его почти не осталось. Формирование этих тел завершилось, когда они набрали всего по две земных массы газа. Но это уже не газовые, а ледяные гиганты, которые могут оказаться самым распространенным типом.

Гравитационные поля планет второго поколения увеличивают в системе хаос. Если эти тела сформировались слишком близко, их взаимодействие друг с другом и с газовым диском может выбросить их на более высокие эллиптические орбиты. В Солнечной системе планеты имеют почти круговые орбиты и достаточно удалены друг от друга, что уменьшает их взаимное влияние. Но в других планетных системах орбиты как правило эллиптические. В некоторых системах они резонансные, т. е. орбитальные периоды соотносятся как небольшие целые числа. Вряд ли это было заложено при формировании, но могло возникнуть при миграции планет, когда постепенно взаимное гравитационное влияние привязало их друг к другу. Различие между такими системами и Солнечной системой могло определяться разным начальным распределением газа.

Большинство звезд рождаются в скоплениях, причем более половины из них — двойные. Планеты могут сформироваться не в плоскости орбитального движения звезд; в этом случае гравитация соседней звезды быстро перестраивает и искажает орбиты планет, образуя не такие плоские системы, как наша Солнечная, а сферические, напоминающие рой пчел вокруг улья.

Результат: компания планет-гигантов.

Прибавление в семействе

Первый газовый гигант создает условия для рождения следующих. Расчищенная им полоса действует как крепостной ров, который не может преодолеть вещество, движущееся снаружи к центру диска. Оно собирается на внешней стороне разрыва, где из него формируются новые планеты.

7. Формируются планеты типа Земли

Время: от 10 до 100 млн лет

Планетологи считают, что похожие на Землю планеты распространены больше, чем планеты-гиганты. Несмотря на то что рождение газового гиганта требует точного баланса конкурирующих процессов, формирование твердой планеты должно быть намного сложнее.

До обнаружения внесолнечных землеподобных планет мы опирались лишь на данные о Солнечной системе. Четыре планеты земной группы — Меркурий, Венера, Земля и Марс — в основном состоят из веществ с высокой температурой кипения, таких как железо и силикатные породы. Это свидетельствует о том, что сформировались они внутри линии льда и заметно не мигрировали. На таких расстояниях от звезды зародыши планет могут вырасти в газовом диске до 0,1 земной массы, т. е. не больше чем Меркурий. Для дальнейшего роста нужно, чтобы орбиты зародышей пересекались, тогда они будут сталкиваться и сливаться. Условия для этого возникают после испарения газа из диска: под действием взаимных возмущений в течение нескольких миллионов лет орбиты зародышей вытягиваются в эллипсы и начинают пересекаться.

Гораздо труднее объяснить, как система вновь стабилизирует себя, и как планеты земной группы оказались на их нынешних почти круговых орбитах. Небольшое количество оставшегося газа могло бы это обеспечить, но такой газ должен был предотвратить изначальное «разбалтывание» орбит зародышей. Возможно, когда планеты уже почти сформировались, остается еще приличный рой планетезималей. В течение следующих 100 млн лет планеты сметают часть из этих планетезималей, а оставшиеся отклоняют в сторону Солнца. Планеты передают свое беспорядочное движение обреченным планетезималям и переходят на круговые или почти круговые орбиты.

Согласно другой идее, длительное влияние гравитации Юпитера вызывает у формирующихся планет земной группы миграцию, передвигая их в области со свежим веществом. Это влияние должно быть сильнее на резонансных орбитах, которые постепенно сдвигались внутрь по мере опускания Юпитера к его современной орбите. Радиоизотопные измерения указывают, что астероиды сформировались первыми (спустя 4 млн лет после образования Солнца), затем — Марс (через 10 млн лет), а позже — Земля (через 50 млн лет): как будто бы поднятая Юпитером волна прошла через Солнечную систему. Если бы она не встретила препятствий, то сдвинула бы все планеты земной группы к орбите Меркурия. Как же им удалось избежать столь печальной участи? Возможно, они уже стали слишком массивными, и Юпитер не смог их сильно сдвинуть, а может быть, сильные удары выбросили их из зоны действия Юпитера.

Заметим, что многие планетологи не считают роль Юпитера решающей в формировании твердых планет. Большинство солнцеподобных звезд лишено планет типа Юпитера, но вокруг них есть пылевые диски. А значит, там есть планетезимали и зародыши планет, из которых могут сформироваться объекты типа Земли. Основной вопрос, на который должны ответить наблюдатели в ближайшее десятилетие, — в скольких системах есть земли, но нет юпитеров.

Важнейшей эпохой для нашей планеты стал период между 30 и 100 млн лет после формирования Солнца, когда зародыш размером с Марс врезался в прото-Землю и породил гигантское количество обломков, из которых сформировалась Луна. Столь мощный удар, конечно же, разбросал огромное количество вещества по Солнечной системе; поэтому землеподобные планеты в других системах тоже могут иметь спутники. Этот сильный удар должен был сорвать первичную атмосферу Земли. Ее современная атмосфера в основном возникла из газа, заключенного в планетезималях. Из них сформировалась Земля, а позже этот газ вышел наружу при извержении вулканов.

Результат: планеты земного типа.

Объяснение некругового движения

Во внутренней области солнечной системы зародыши планет не могут расти, захватывая газ, поэтому они должны сливаться друг с другом. Для этого их орбиты должны пересекаться, а значит, что-то должно нарушить их первоначально круговое движение.

Когда образуются зародыши, их круговые или почти круговые орбиты не пересекаются.

Гравитационное взаимодействие зародышей между собой и с гигантской планетой возмущает орбиты.

Зародыши объединяются в планету типа земли. Она возвращается на круговую орбиту, перемешивая оставшийся газ и разбрасывая сохранившиеся планетезимали.

8. Начинаются операции по зачистке

Время: от 50 млн до 1 млрд лет

К этому моменту планетная система уже почти сформировалась. Продолжаются еще несколько второстепенных процессов: распад окружающего звездного скопления, способного своей гравитацией дестабилизировать орбиты планет; внутренняя неустойчивость, возникающая после того, как звезда окончательно разрушает свой газовый диск; и, наконец, продолжающееся рассеивание оставшихся планетезималей гигантской планетой. В Солнечной системе Уран и Нептун выбрасывают планетезимали наружу, в пояс Койпера, или же к Солнцу. А Юпитер своим мощным тяготением отсылает их в облако Оорта, на самый край области гравитационного влияния Солнца. В облаке Оорта может содержаться около 100 земных масс вещества. Время от времени планетезимали из пояса Койпера или облака Оорта приближаются к Солнцу, образуя кометы.

Разбрасывая планетезимали, сами планеты немного мигрируют, и этим можно объяснить синхронизацию орбит Плутона и Нептуна. Возможно, орбита Сатурна когда-то располагалась ближе к Юпитеру, но затем отдалилась от него. Вероятно, с этим связана так называемая поздняя эпоха сильной бомбардировки — период очень интенсивных столкновений с Луной (и, по-видимому, с Землей), наступивший спустя 800 млн лет после формирования Солнца. В некоторых системах грандиозные столкновения сформировавшихся планет могут возникать на поздней стадии развития.

Результат: Конец формирования планет и комет.

Посланцы из прошлого

Метеориты — не просто космические камни, а космические ископаемые. По мнению планетологов, это единственные осязаемые свидетели рождения Солнечной системы. Считается, что это куски астероидов, которые являются фрагментами планетезималей, никогда не участвовавших в формировании планет и навсегда оставшихся в замороженном состоянии. Состав метеоритов отражает все, что случилось с их родительскими телами. Поразительно, что на них видны следы от давнего гравитационного воздействия Юпитера.

Железные и каменные метеориты очевидно образовались в планетезималях, испытавших плавление, в результате чего железо отделилось от силикатов. Тяжелое железо опустилось к ядру, а легкие силикаты собрались во внешних слоях. Ученые считают, что нагрев был вызван распадом радиоактивного изотопа алюминий-26, имеющего период полураспада 700 тыс. лет. Взрыв сверхновой или соседняя звезда могли «заразить» протосолнечное облако этим изотопом, в результате чего он в большом количестве попал в первое поколение планетезималей Солнечной системы.

Однако железные и каменные метеориты встречаются редко. Большинство содержит хондры — мелкие зерна миллиметрового размера. Эти метеориты — хондриты — возникли до планетезималей и никогда не испытывали плавления. Похоже, что большинство астероидов не связаны с первым поколением планетезималей, которые скорее всего были выброшены из системы под действием Юпитера. Планетологи вычислили, что в области нынешнего пояса астероидов раньше содержалось в тысячу раз больше вещества, чем сейчас. Частицы, избежавшие когтей Юпитера или позже попавшие в пояс астероидов, объединились в новые планетезимали, но к тому времени в них осталось мало алюминия-26, поэтому они никогда не плавились. Изотопный состав хондритов показывает, что они сформировались примерно через 2 млн лет после начала формирования Солнечной системы.

Стеклообразное строение некоторых хондр указывает, что перед тем как попасть в планетезимали, они были резко нагреты, расплавились, а затем быстро остыли. Волны, управлявшие ранней орбитальной миграцией Юпитера, должны были превращаться в ударные волны и могли вызвать этот внезапный нагрев.

Нет единого плана

До начала эры открытия внесолнечных планет мы могли изучать только Солнечную систему. Несмотря на то что это позволило нам понять микрофизику важнейших процессов, у нас не было представления о путях развития иных систем. Удивительное разнообразие планет, обнаруженных за последнее десятилетие, значительно раздвинуло горизонт наших знаний. Мы начинаем понимать, что внесолнечные планеты — это последнее выжившее поколение в ряду протопланет, испытавших формирование, миграцию, разрушение и непрерывную динамическую эволюцию. Относительный порядок в нашей Солнечной системе не может быть отражением какого-то общего плана.

От попыток выяснить, как в далеком прошлом формировалась наша Солнечная система, теоретики обратились к исследованиям, позволяющим делать прогнозы о свойствах еще не открытых систем, которые могут быть обнаружены в ближайшее время. До сих пор наблюдатели замечали вблизи солнцеподобных звезд только планеты с массами порядка массы Юпитера. Вооружившись приборами нового поколения, они смогут искать объекты земного типа, которые в соответствии с теорией последовательной аккреции должны быть широко распространены. Планетологи только начинают осознавать то, насколько разнообразны миры во Вселенной.

Перевод: В. Г. Сурдин

Дополнительная литература:
1) Towards a Deterministic Model of Planetary Formation . S. Ida and D.N.C. Lin in Astrophysical Journal, Vol. 604, No. 1, pages 388-413; March 2004.
2) Planet Formation: Theory, Observation, and Experiments. Edited by Hubert Klahr and Wolfgang Brandner. Cambridge University Press, 2006.
3) Альвен Х., Аррениус Г. Эволюция Солнечной системы. М.: Мир, 1979.
4) Витязев А.В., Печерникова Г.В., Сафронов В.С. Планеты земной группы: Происхождение и ранняя эволюция. М.: Наука, 1990.

Гипотеза об образовании Солнечной системы из газопылевого облака - небулярная гипотеза - первоначально была предложена в XVIII веке Эммануилом Сведенборгом, Иммануилом Кантом и Пьером-Симоном Лапласом. В дальнейшем её развитие происходило с участием множества научных дисциплин, в том числе астрономии, физики, геологии и планетологии. С началом космической эры в 1950-х годах, а также с открытием в 1990-х годах планет за пределами Солнечной системы (), эта модель подверглась многократным проверкам и улучшениям для объяснения новых данных и наблюдений.

Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного газопылевого облака. В общих чертах, этот процесс можно описать следующим образом:

  • Спусковым механизмом гравитационного коллапса стало небольшое (спонтанное) уплотнение вещества газопылевого облака (возможными причинами чего могли стать как естественная динамика облака, так и прохождение сквозь вещество облака ударной волны от взрыва , и др.), которое стало центром гравитационного притяжения для окружающего вещества - центром гравитационного коллапса. Облако уже содержало не только первичные водород и гелий, но и многочисленные тяжёлые элементы (Металличность), оставшиеся после звёзд предыдущих поколений. Кроме того, коллапсирующее облако обладало некоторым начальным угловым моментом.
  • В процессе гравитационного сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного диска.
  • Как следствие сжатия росла плотность и интенсивность столкновений друг с другом частиц вещества, в результате чего температура вещества непрерывно возрастала по мере сжатия. Наиболее сильно нагревались центральные области диска.
  • При достижении температуры в несколько тысяч кельвинов, центральная область диска начала светиться - сформировалась протозвезда. Вещество облака продолжало падать на протозвезду, увеличивая давление и температуру в центре. Внешние же области диска оставались относительно холодными. За счёт гидродинамических неустойчивостей, в них стали развиваться отдельные уплотнения, ставшие локальными гравитационными центрами формирования планет из вещества протопланетного диска.
  • Когда температура в центре протозвезды достигла миллионов кельвинов, в центральной области началась реакция термоядерного синтеза гелия из водорода. Протозвезда превратилась в обычную звезду главной последовательности. Во внешней области диска крупные сгущения образовали планеты, вращающиеся вокруг центрального светила примерно в одной плоскости и в одном направлении.

Последующая эволюция

Раньше считалось, что все планеты сформировались приблизительно на тех орбитах, где находятся сейчас, однако в конце XX - начале XXI века эта точка зрения радикально изменилась. Сейчас считается, что на заре своего существования Солнечная система выглядела совсем не так, как она выглядит сейчас. По современным представлениям, внешняя Солнечная Система была гораздо компактнее по размеру чем сейчас, был гораздо ближе к Солнцу, а во внутренней Солнечной системе помимо доживших до настоящего времени небесных тел существовали и другие объекты, по размеру не меньшие чем .

Планеты земного типа

Гигантское столкновение двух небесных тел, возможно, породившее спутник Земли Луну

В конце эпохи формирования планет внутренняя Солнечная система была населена 50-100 протопланетами с размерами, варьирующимися от лунного до марсианского. Дальнейший рост размеров небесных тел был обусловлен столкновениями и слияниями этих протопланет между собой. Так, например, в результате одного из столкновений Меркурий лишился большей части своей мантии, в то время как в результате другого т.н. гигантского столкновения (возможно, с гипотетической планетой Тейя) был рождён спутник . Эта фаза столкновений продолжалась около 100 миллионов лет до тех пор, пока на орбитах не осталось 4 массивных небесных тела, известных сейчас.

Одной из нерешённых проблем данной модели является тот факт, что она не может объяснить, как начальные орбиты протопланетных объектов, которые должны были обладать высоким эксцентриситетом, чтобы сталкиваться между собой, смогли в результате породить стабильные и близкие к круговым орбиты оставшихся четырёх планет. По одной из гипотез, эти планеты были сформированы в то время, когда межпланетное пространство ещё содержало значительное количество газо-пылевого материала, который за счёт трения снизил энергию планет и сделал их орбиты более гладкими. Однако этот же самый газ должен был предотвратить возникновение большой вытянутости в первоначальных орбитах протопланет. Другая гипотеза предполагает, что коррекция орбит внутренних планет произошла не за счёт взаимодействия с газом, а за счёт взаимодействия с оставшимися более мелкими телами системы. По мере прохождения крупных тел сквозь облако мелких объектов последние из-за гравитационного влияния стягивались в регионы с более высокой плотностью, и создавали таким образом «гравитационные гребни» на пути прохождения крупных планет. Увеличивающееся гравитационное влияние этих «гребней», согласно этой гипотезе, заставляло планеты замедляться и выходить на более округлую орбиту.

Пояс астероидов

Внешняя граница внутренней Солнечной системы располагается между 2 и 4 а.е. от Солнца и представляет собой . Выдвигались, но в итоге не были подтверждены гипотезы о существовании планеты между и (например, гипотетической планеты Фаэтон), которая на ранних этапах формирования Солнечной системы разрушилась так, что её осколками стали астероиды, сформировавшие пояс астероидов. Согласно современным воззрениям, единой протопланеты-источника астероидов не было. Изначально астероидный пояс содержал достаточное количество материи, чтобы сформировать 2-3 планеты размером с Землю. Эта область содержала большое количество планетозималей, которые слипались между собой, образуя всё более крупные объекты. В результате этих слияний в поясе астероидов сформировалось около 20-30 протопланет с размерами от лунного до марсианского. Однако начиная с того времени, когда в относительной близости от пояса сформировалась планета Юпитер, эволюция этой области пошла по другому пути. Мощные орбитальные резонансы с Юпитером и , а также гравитационные взаимодействия с более массивными протопланетами этой области разрушали уже сформированные планетозимали. Попадая в область действия резонанса при прохождении поблизости планеты-гиганта планетозимали получали дополнительное ускорение, врезались в соседние небесные тела и дробились вместо того чтобы плавно сливаться.

По мере миграции Юпитера к центру системы возникающие возмущения имели всё более выраженный характер. В результате этих резонансов планетозимали меняли эксцентриситет и наклонение своих орбит и даже выбрасывались за пределы астероидного пояса. Некоторые из массивных протопланет также были выброшены Юпитером за пределы пояса астероидов, в то время как другие протопланеты, вероятно, мигрировали во внутреннюю Солнечную систему, где сыграли финальную роль в увеличении массы нескольких оставшихся планет земного типа. В течение этого периода истощения влияние планет-гигантов и массивных протопланет заставило астероидный пояс «похудеть» до всего лишь 1 % от Земной массы, которую составляли в основном маленькие планетозимали. Эта величина, однако, в 10-20 раз больше современного значения массы астероидного пояса, которая теперь составляет 1/2000 массы Земли. Считается, что второй период истощения, который и привёл массу астероидного пояса к текущим значениям, наступил, когда Юпитер и Сатурн вошли в орбитальный резонанс 2:1.

Вполне вероятно, что период гигантских столкновений в истории внутренней Солнечной системы сыграл важную роль в получении Землёй её запасов воды (~6·10 21 кг). Дело в том, что вода - слишком летучее вещество, чтобы возникнуть естественным образом во время формирования Земли. Скорее всего она была занесена на Землю из внешних, более холодных областей Солнечной системы. Возможно, именно протопланеты и планетозимали, выброшенные Юпитером за пределы астероидного пояса, занесли воду на Землю. Другими кандидатами на роль главных доставщиков воды являются также главного пояса астероидов, обнаруженные в 2006 году, в то время как кометы из пояса Койпера и из других отдалённых областей предположительно занесли на Землю не более 6 % воды.

Планетная миграция

В соответствии с небулярной гипотезой, две внешние планеты Солнечной системы находятся в «неправильном» месте. и , «ледяные гиганты» Солнечной системы, располагаются в области, где пониженная плотность вещества туманности и длительные орбитальные периоды делали формирование таких планет весьма маловероятным событием. Считается, что эти две планеты изначально сформировались на орбитах вблизи Юпитера и Сатурна, где имелось гораздо больше строительного материала, и только спустя сотни миллионов лет мигрировали на свои современные позиции.

Симуляция, показывающая расположение внешних планет и пояса Койпера: a) Перед орбитальным резонансом 2:1 Юпитера и Сатурна b) Разбрасывание объектов древнего пояса Койпера по Солнечной системе после сдвига орбиты Нептуна c) После выбрасывания Юпитером объектов пояса Койпера за пределы системы

Планетная миграция в состоянии объяснить существование и свойства внешних регионов Солнечной системы. За Нептуном Солнечная система содержит пояс Койпера, и , представляющие собой рассеянные скопления маленьких ледяных тел и дающие начало большинству наблюдаемых в Солнечной системе комет. Сейчас пояс Койпера располагается на расстоянии 30-55 а.е. от Солнца, рассеянный диск начинается в 100 а.е. от Солнца, а облако Оорта - в 50 000 а.е. от центрального светила. Однако в прошлом пояс Койпера был гораздо плотнее и ближе к Солнцу. Его внешний край находился примерно в 30 а.е. от Солнца, в то время как его внутренний край располагался непосредственно за орбитами Урана и Нептуна, которые в свою очередь были также ближе к Солнцу (приблизительно 15-20 а.е.) и, кроме того, располагались в противоположном порядке: Уран был дальше от Солнца чем Нептун.

После формирования Солнечной системы орбиты всех планет-гигантов продолжали медленно изменяться под влиянием взаимодействий с большим количеством оставшихся планетозималей. Спустя 500-600 миллионов лет (4 миллиарда лет назад) Юпитер и Сатурн вошли в орбитальный резонанс 2:1; Сатурн совершал один оборот вокруг Солнца в точности за то время, за которое Юпитер совершал 2 оборота. Этот резонанс создал гравитационное давление на внешние планеты, вследствие чего Нептун вырвался за пределы орбиты Урана и врезался в древний пояс Койпера. По этой же причине планеты стали отбрасывать окружающие их ледяные планетозимали вовнутрь Солнечной системы, в то время как сами стали отдаляться вовне. Этот процесс продолжался аналогичным образом: под действием резонанса планетозимали выбрасывались вовнутрь системы каждой последующей планетой, которую они встречали на своём пути, а орбиты самих планет отдалялись все дальше. Этот процесс продолжался до тех пор, пока планетозимали не вошли в зону непосредственного влияния Юпитера, после чего огромная гравитация этой планеты отправила их на высокоэллиптические орбиты или даже выбросила их за пределы Солнечной системы. Эта работа в свою очередь слегка сдвинула орбиту Юпитера вовнутрь. Объекты, выброшенные Юпитером на высокоэллиптические орбиты, сформировали облако Оорта, а тела, выброшенные мигрирующим Нептуном, сформировали современный пояс Койпера и рассеянный диск. Данный сценарий объясняет, почему рассеянный диск и пояс Койпера имеют малую массу. Некоторые из катапультированных объектов, включая , со временем вошли в гравитационный резонанс с орбитой Нептуна. Постепенно трение с рассеянным диском сделало орбиты Нептуна и Урана вновь гладкими.

Существует также гипотеза о пятом газовом гиганте, претерпевшем радикальную миграцию и вытолкнутом при формировании современного облика Солнечной системы на её далёкие окраины (ставшим гипотетической планетой Тюхе или другой «Планетой X») или даже за её пределы (ставшим планетой-сиротой).

Подтверждение теории о массивной планете за орбитой Нептуна нашли Констанин Батыгин и Майкл Браун 20 января 2016 года на основе орбит шести транснептуновых объектов. Её масса, использующаяся в расчётах составляла примерно 10 земных масс, а оборот вокруг Солнца предположительно занимал от 10.000 до 20.000 земных лет.

Считается, что в отличие от внешних планет внутренние тела системы не претерпевали значительных миграций, поскольку после периода гигантских столкновений их орбиты оставались стабильными.

Поздняя тяжёлая бомбардировка

Гравитационное разрушение древнего астероидного пояса, вероятно, положило начало периоду тяжёлой бомбардировки, происходившему около 4 миллиардов лет назад, через 500-600 миллионов лет после формирования Солнечной системы. Этот период длился несколько сотен миллионов лет и его последствия видны до сих пор на поверхности геологически неактивных тел Солнечной системы, таких как Луна или Меркурий, в виде многочисленных кратеров ударного происхождения. А самое древнее свидетельство жизни на Земле датируется 3,8 миллиардами лет назад - почти сразу после окончания периода поздней тяжёлой бомбардировки.

Гигантские столкновения являются нормальной (хоть и редкой в последнее время) частью эволюции Солнечной системы. Доказательствами этого служат столкновение кометы Шумейкера-Леви с Юпитером в 1994, падение на Юпитер небесного тела в 2009 и метеоритный кратер в Аризоне. Это говорит о том, что процесс аккреции в Солнечной системе ещё не закончен, и, следовательно, представляет опасность для жизни на Земле.

Формирование спутников

Естественные спутники образовались у большинства планет Солнечной системы, а также у многих других тел. Различают три основных механизма их формирования:

  • формирование из около-планетного диска (в случае газовых гигантов)
  • формирование из осколков столкновения (в случае достаточно крупного столкновения под малым углом)
  • захват пролетающего объекта

Юпитер и Сатурн имеют много спутников, таких как , и , которые, вероятно, сформировались из дисков вокруг этих планет-гигантов по тому же принципу, как и сами эти планеты сформировались из диска вокруг молодого Солнца. На это указывают их большие размеры и близость к планете. Эти свойства невозможны для спутников, приобретённых путём захвата, а газообразная структура планет делает невозможной и гипотезу формирования лун путём столкновения планеты с другим телом.

Будущее

По оценкам астрономов Солнечная система не будет претерпевать экстремальных изменений до тех пор, пока Солнце не израсходует запасы водородного топлива. Этот рубеж положит начало переходу Солнца с главной последовательности диаграммы Герцшпрунга - Рассела в фазу . Однако и в фазе главной последовательности звезды Солнечная система продолжает эволюционировать.

Долговременная устойчивость

Солнечная система является хаотичной системой, в которой орбиты планет непредсказуемы на очень длинном отрезке времени. Одним из примеров такой непредсказуемости является система Нептун-Плутон, находящаяся в орбитальном резонансе 3:2. Несмотря на то, что сам по себе резонанс будет оставаться стабильным, невозможно предсказать хоть с каким-нибудь приближением положение Плутона на орбите более чем на 10-20 миллионов лет (время Ляпунова). Другим примером может служить наклон оси вращения Земли, который по причине трения внутри Земной мантии, вызванного приливными взаимодействиями с Луной, невозможно высчитать начиная с некоторого момента между 1.5 и 4.5 миллиардами лет в будущем.

Орбиты внешних планет хаотичны на больших временных масштабах: их время Ляпунова составляет 2-230 миллионов лет. Это не только означает, что позицию планеты на орбите начиная с этого момента в будущем невозможно определить хоть с каким-нибудь приближением, но и орбиты сами по себе могут экстремально измениться. Наиболее сильно хаос системы может проявиться в изменении эксцентриситета орбиты, при котором орбиты планет становятся более или менее эллиптическими.

Солнечная система является устойчивой в том смысле, что никакая из планет не может столкнуться с другой или быть выброшенной за пределы системы в ближайшие несколько миллиардов лет. Однако за этими временными рамками, например, в течение 5 миллиардов лет, эксцентриситет орбиты Марса может вырасти до значения 0,2, что приведёт к пересечению орбит Марса и Земли, а значит, и к реальной угрозе столкновения. В этот же период времени эксцентриситет орбиты Меркурия может увеличиться ещё больше, и впоследствии близкое прохождение около может выбросить Меркурий за пределы Солнечной системы, или вывести на курс столкновения с самой Венерой или с Землёй.

Спутники и кольца планет

Эволюция лунных систем планет определяется приливными взаимодействиями между телами системы. Из-за разности силы гравитации, воздействующей на планету со стороны спутника, в разных её областях (более удалённые области притягиваются слабее, в то время как более близкие - сильнее), форма планеты изменяется - она как бы слегка вытягивается в направлении спутника. Если направление обращения спутника вокруг планеты совпадает с направлением вращения планеты, и при этом планета вращается быстрее чем спутник, то этот «приливный бугор» планеты будет постоянно «убегать» вперёд по отношению к спутнику. В этой ситуации угловой момент вращения планеты будет передаваться спутнику. Это приведёт к тому, что спутник будет получать энергию и постепенно удаляться от планеты, в то время как планета будет терять энергию и вращаться все медленнее и медленнее.

Земля и Луна являются примером такой конфигурации. Вращение Луны приливно-закреплено по отношению к Земле: период обращения Луны вокруг Земли (в настоящее время примерно 29 дней) совпадает с периодом вращения Луны вокруг своей оси, и поэтому Луна всегда повёрнута к Земле одной и той же стороной. Луна постепенно отдаляется от Земли, в то время как вращение Земли постепенно замедляется. Через 50 миллиардов лет, если они переживут расширение Солнца, Земля и Луна станут приливно-закреплены по отношению друг к другу. Они войдут в так называемый спин-орбитальный резонанс, при котором Луна будет обращаться вокруг Земли за 47 дней, период вращения обоих тел вокруг своей оси будет одинаков, и каждое из небесных тел будет всегда видимо только с одной стороны для своего партнёра.

Другими примерами такой конфигурации являются системы Галилеевых спутников Юпитера, а также большинство крупных лун Сатурна.

Нептун и его спутник Тритон, заснятый при пролёте миссии Вояджер-2. В будущем, вероятно, этот спутник будет разорван на части приливными силами, породив новое кольцо вокруг планеты.

Иной сценарий ожидает системы, в которых спутник движется вокруг планеты быстрее, чем она вращается вокруг себя, или в которых спутник движется в направлении противоположном направлению вращения планеты. В таких случаях приливная деформация планеты постоянно отстаёт от позиции спутника. Это меняет направление переноса углового момента между телами на противоположное. что в свою очередь приведёт к ускорению вращения планеты и сокращению орбиты спутника. С течением времени спутник будет приближаться по спирали к планете, пока в какой-то момент либо не упадёт на поверхность или в атмосферу планеты, либо не будет разорван приливными силами на части, породив таким образом планетарное кольцо. Такая судьба ожидает спутник Марса (через 30-50 миллионов лет), спутник Нептуна (через 3,6 миллиарда лет), и Юпитера, и, как минимум, 16 мелких лун Урана и Нептуна. Спутник Урана при этом может быть даже столкнётся с луной-соседкой.

Ну и, наконец, в третьем типе конфигурации планета и спутник приливно-закреплены по отношению друг к другу. В этом случае «приливный бугор» расположен всегда точно под спутником, передача углового момента отсутствует, и, как следствие, орбитальный период не меняется. Примером такой конфигурации является Плутон и .



Реферат

Солнечная система и ее происхождение


Введение

солнечный планета земной

Солнечная система состоит из центрального небесного тела - звезды Солнца, 9 больших планет, обращающихся вокруг него, их спутников, множества малых планет - астероидов, многочисленных комет и межпланетной среды. Большие планеты располагаются в порядке удаления от Солнца следующим образом: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Один из важных вопросов, связанных с изучением нашей планетной системы - проблема ее происхождения. Решение данной проблемы имеет естественно-научное, мировоззренческое и философское значение. На протяжении веков и даже тысячелетий ученые пытались выяснить прошлое, настоящее и будущее Вселенной, в том числе и Солнечной системы.

Предмет изучения данной работы: Солнечная система, ее происхождение.

Цель работы: изучение строения и особенностей Солнечной системы, характеристика ее происхождения.

Задачи работы: рассмотреть возможные гипотезы происхождения Солнечной системы, охарактеризовать объекты Солнечной системы, рассмотреть строение Солнечной системы.

Актуальность работы: в настоящее время считается, что Солнечная система довольно хорошо изучена и лишена каких-либо серьезных тайн. Однако до сих пор еще не созданы разделы физики, позволяющие описать процессы, происходящие сразу после Большого взрыва, ничего нельзя сказать о породивших его причинах, сохраняется полная неясность относительно физической природы темной материи. Солнечная система - наш дом, поэтому необходимо интересоваться его устройством, его историей и перспективами.


1. Происхождение Солнечной системы


.1 Гипотезы происхождения Солнечной системы


История науки знает множество гипотез о происхождении Солнечной системы. Эти гипотезы появились раньше, чем стали известны многие важные закономерности Солнечной системы. Значение первых гипотез в том, что они пытались объяснить происхождение небесных тел как результат естественного процесса, а не акта божественного творения. Кроме этого, некоторые ранние гипотезы содержали правильные идеи о происхождении небесных тел.

В наше время существуют две основных научных теории возникновения Вселенной. Согласно теории стабильного состояния материя, энергия, пространство и время существовали всегда. Но тут же возникает вопрос: почему сейчас никому не удается создать материю и энергию?

Самая популярная теория происхождения Вселенной, поддерживаемая большинством теоретиков - теория большого взрыва.

Теорию большого взрыва предложили в 20-х годах XX века ученые Фридман и Леметр. Согласно этой теории когда-то наша Вселенная представляла собой бесконечно малый сгусток, сверхплотный и раскаленный до очень высоких температур. Это нестабильное образование внезапно взорвалось, пространство быстро расширилось, а температура разлетающихся частиц, обладающих высокой энергией, начала снижаться. Примерно после первого миллиона лет атомы водорода и гелия, стали стабильными. Под действием сил притяжения начали концентрироваться облака материи. В результате сформировались галактики, звезды, и другие небесные тела. Звезды старели, взрывались сверхновые, после чего появлялись более тяжелые элементы. Они формировали звезды более позднего поколения, такие, как наше Солнце. В качестве доказательств того, что в свое время произошел большой взрыв, говорят о красном смещении света от объектов, расположенных на больших расстояниях и микроволновом фоновом излучении.

На самом же деле объяснение того, как и откуда все началось - до сих пор серьезная проблема. Либо не существовало ничего, с чего все могло бы начаться - ни вакуума, ни пыли, ни времени. Либо же существовало нечто, и в этом случае оно требует объяснения.

Огромная проблема теории большого взрыва в том, как предполагаемое изначальное излучение высокой энергии, разлетаясь в разные стороны, могло объединиться в такие структуры, как звезды, галактики и скопления галактик. Эта теория предполагает наличие дополнительных источников массы, обеспечивающих соответствующие значения силы притяжения. Материя, обнаружить которую так и не удалось, была названа Холодной темной материей. Для образования галактик необходимо, чтобы такая материя составляла 95-99% Вселенной.

Кант развил гипотезу, согласно которой вначале мировое пространство было заполнено материей, находившейся в состоянии хаоса. Под действием притяжения и отталкивания материя со временем переходила в более разнообразные формы. Элементы, имеющие большую плотность, по закону всемирного тяготения притягивали менее плотные, вследствие этого образовались отдельные сгустки материи. Под действием сил отталкивания прямолинейное движение частиц к центру тяготения заменялось кругообразным. Вследствие столкновения частиц вокруг отдельных сгустков и формировались планетные системы.

Совершенно другая гипотеза о происхождении планет была изложена Лапласом. На ранней стадии своего развития Солнце представляло собой огромную, медленно вращающуюся туманность. Под действием силы тяжести протосолнце сжималось и принимало сплюснутую форму. Как только на экваторе сила тяжести уравновешивалась центробежной силой инерции, от протосолнца отделялось гигантское кольцо, которое охлаждалось и разрывалось на отдельные сгустки. Из них и формировались планеты. Такой отрыв колец происходил несколько раз. Аналогичным путем образовались и спутники планет. Гипотеза Лапласа оказывалась не в состоянии объяснить перераспределение количества движения между Солнцем и планетами. Для этой и других гипотез, по которым планеты образуются из горячего газа, камнем преткновения является следующее: из горячего газа планета сформироваться не может, так как этот газ очень быстро расширяется и рассеивается в пространстве.

Большую роль в разработке взглядов на происхождение планетной системы сыграли работы нашего соотечественника Шмидта. В основе его теории лежат два предположения: планеты сформировались из холодного газопылевого облака; это облако было захвачено Солнцем при его обращении вокруг центра Галактики. На основе этих предположений удалось объяснить некоторые закономерности в строении Солнечной системы - распределение планет по расстояниям от Солнца, вращение и др.

Гипотез было много, но если каждая из них хорошо объясняла часть исследований, то другую часть не объясняла. При разработке космогонической гипотезы прежде всего необходимо решить вопрос: откуда взялось вещество, из которого со временем сформировались планеты? Здесь возможны три варианта:

1.Планеты образуются из того же газопылевого облака, что и Солнце (И. Кант).

2.Облако, из которого образовались планеты, захвачено Солнцем при его обращении вокруг центра Галактики (О.Ю. Шмидт).

3.Это облако отделилось от Солнца в процессе его эволюции (П. Лаплас, Д. Джинс и др.)


1.2 Теория происхождения Земли


Процесс формирования планеты Земля, как и любой из планет, имел свои особенности. Земля зародилась около 5 109 лет назад на расстоянии 1 а. е. от Солнца. Примерно 4,6-3,9 млрд лет назад происходила ее интенсивная бомбардировка межпланетными обломками и метеоритами, при падении на Землю их вещество нагревалось и дробилось. Первичное вещество сжималось под действием тяготения, принимало форму шара, недра которого разогревались. Происходили процессы перемешивания, шли химические реакции, более легкие силикатные породы выдавливались из глубины на поверхность и образовывали земную кору, тяжелые - оставались внутри. Разогрев сопровождался бурной вулканической деятельностью, пары и газы вырывались наружу. У планет земной группы сначала не было атмосфер, как на Меркурии и Луне. Активизация процессов на Солнце вызывала увеличение вулканической деятельности, рождались из магмы гидросфера и атмосфера, появились облака, водяные пары конденсировались в океанах.

Образование океанов не прекращается на Земле до сих пор, хотя это уже не интенсивный процесс. Обновляется земная кора, вулканы выбрасывают в атмосферу огромные количества углекислоты и водяных паров. Первичная атмосфера Земли состояла в основном из СO2. Резкое изменение состава атмосферы произошло примерно 2 млрд лет назад, его связывают с созданием гидросферы и зарождением жизни. Растения каменноугольного периода поглотили большую часть СO2 и насытили атмосферу O2. Последние 200 млн лет состав земной атмосферы практически остается неизменным. Доказательством этого служат залежи каменного угля и мощные пласты отложений карбонатов в осадочных породах. Они содержат большое количество углерода, ранее входившего в состав атмосферы в виде СO2 и СО.

Время существования Земли делится на 2 периода: ранняя история и геологическая история.

I. Ранняя история Землиразделяется на три фазы: фазу рождения, фазу расплавления внешней сферы и фазу первичной коры (лунную фазу).

Фаза рожденияпродолжалась 100 млн лет. В фазу рождения Земля приобрела приблизительно 95% современной массы.

Фаза расплавления датируется 4,6-4,2 млрд лет назад. Земля долго оставалась холодным космическим телом, только в конце этой фазы, когда началась интенсивная бомбардировка ее крупными объектами, произошло сильное разогревание, а затем полное расплавление вещества внешней зоны и внутренней зоны планеты. Наступила фаза гравитационной дифференциации вещества: тяжелые химические элементы опускались вниз, легкие поднимались вверх. Поэтому в процессе дифференциации вещества в центре Земли сосредоточивались тяжелые химические элементы (железо, никель и др.), из которых образовалось ядро, из более легких соединений возникла мантия Земли. Кремний стал основой формирования континентов, а самые легкие химические соединения образовали океаны и атмосферу Земли. В земной атмосфере первоначально было много водорода, гелия и таких водородосодержащих соединений, как метан, аммиак, водяной пар.

Лунная фаза продолжалась 400 млн лет от 4,2 до 3,8 млрд лет назад. При этом остывание расплавленного вещества внешней сферы Земли привело к образованию тонкой первичной коры. В это же время происходило формирование гранитного слоя материковой коры. Континенты сложены горными породами, содержащими 65-70% кремнезема и значительное количество калия и натрия. Ложе океанов выстилается базальтами - породами, содержащими 45-50% Si02 и богатыми магнием и железом. Континенты построены менее плотным материалом, чем дно океанов.

II. Геологическая история- это период развития Земли как планеты в целом, особенно ее коры и природной среды. После охлаждения земной поверхности до температуры ниже 100°С на ней образовалась огромная масса жидкой воды, которая представляла собой не простое скопление неподвижных вод, а находящихся в активном глобальном круговороте. Земля обладает наибольшей массой из планет земной группы и поэтому имеет наибольшую внутреннюю энергию - радиогенную, гравитационную.

За счет парникового эффекта температура поверхности повышается, вместо -23°С стало +15°С. Если бы этого не произошло, то в природной среде жидкой воды было бы не 95% общего количества в гидросфере, а во много раз меньше.

Солнце снабжает Землю теплом, необходимым для поддержания ее температуры в подходящем диапазоне. Следует иметь в виду, что небольшое изменение всего лишь на несколько процентов количества тепла, получаемого Землей от Солнца, приведет к сильным изменениям земного климата. Земная атмосфера играет чрезвычайно важную роль в поддержании температуры в допустимых пределах. Она действует как одеяло, не допуская слишком сильного повышения температуры днем и чрезмерного понижения температуры ночью.


2. Состав Солнечной системы и ее особенности


.1 Строение Солнечной системы


Основные закономерности, наблюдаемые в строении, движении, свойствах Солнечной системы:

  1. Орбиты всех планет (кроме орбиты Плутона) лежат практически в одной плоскости, почти совпадающей с плоскостью солнечного экватора.
  2. Все планеты обращаются вокруг Солнца по почти круговым орбитам в одном и том же направлении, совпадающем с направлением вращения Солнца вокруг своей оси.
  3. Направление осевого вращения планет (за исключением Венеры и Урана) совпадает с направлением их обращения вокруг Солнца.
  4. Суммарная масса планет в 750 раз меньше массы Солнца (почти 99,9% массы Солнечной системы приходится на долю Солнца), однако на их долю приходится 98% суммарного момента количества движения всей Солнечной системы.
  5. Планеты делятся на две группы, резко различающиеся между собой по строению, физическим свойствам, - планеты земной группы и планеты-гиганты.

Основную часть Солнечной системы составляют планеты.

Планеты, которые находятся ближе всего к Солнцу (Меркурий, Венера, Земля, Марс) сильно отличаются от последующих четырех. Они называются планетами земного типа, так как, подобно Земле, состоят из твердых пород. Юпитер, Сатурн, Уран и Нептун, называются планетами-гигантами и состоят в основном из водорода.

Церера - это название самого крупного астероида, диаметр которого около 1000 км.

Это глыбы с поперечниками, которые не превышают в размере нескольких километров. Большая часть астероидов вращаются вокруг Солнца в широком «астероидном поясе», который находится между Марсом и Юпитером. Орбиты некоторых астероидов выходят далеко за пределы этого пояса, а иногда приближаются близко к Земле.

Эти астероиды нельзя увидеть невооруженным глазом, потому что их размеры слишком малы, и они очень от нас удалены. Но другие обломки - например, кометы - могут быть видимы в ночном небе благодаря своему яркому сиянию.

Кометы - это небесные тела, которые состоят изо льда, твердых частиц и пыли. Большую часть времени комета движется в дальних участках нашей Солнечной системы и невидима для глаза человека, но когда она приближается к Солнцу, то начинает светиться. Это происходит под воздействием солнечного тепла.

Метеориты - это крупные метеорные тела, которые достигают земной поверхности. Из-за столкновения с Землей огромных метеоритов, в далеком прошлом, образовались огромные кратеры на ее поверхности. Почти миллион тонн метеоритной пыли ежегодно оседает на Земле.


2.2 Планеты земной группы


К числу общих закономерностей развития планет земной группы относятся следующие:

.Все планеты произошли из единого газопылевого облака (туманности).

  1. Приблизительно 4,5 млрд лет назад под влиянием быстрого накопления тепловой энергии внешняя оболочка планет претерпела полное расплавление.
  2. В результате остывания внешних слоев литосферы образовалась кора. На раннем этапе существования планет произошла дифференциация их вещества на ядро, мантию и кору.
  3. Индивидуально происходило развитие внешней области планет. Важнейшим условием здесь является наличие или отсутствие у планеты атмосферы и гидросферы.

Меркурий - самая близкая к Солнцу планета солнечной системы. Расстояние от Меркурия до Солнца всего лишь 58 млн. км. Меркурий - яркое светило, но увидеть его на небе не так просто. Находясь вблизи Солнца, Меркурий всегда виден для нас недалеко от солнечного диска. Поэтому его можно увидеть только в те дни, когда он отходит от Солнца на самое большое расстояние. Было установлено присутствие у Меркурия сильно разряженной газовой оболочки, состоящей главным образом из гелия. Эта атмосфера состоит в динамическом равновесии: каждый атом гелия находится в ней около 200 дней, после чего покидает планету, его же место занимает другая частица из плазмы солнечного ветра. Меркурий гораздо ближе к Солнцу, чем Земля. Поэтому Солнце на нем светит и греет в 7 раз сильнее, чем у нас. На дневной стороне Меркурия страшно жарко, температура там поднимается до 400О выше нуля. Зато на ночной стороне всегда сильный мороз, который, вероятно, доходит до 200О ниже нуля. Одна его половина - горячая каменная пустыня, а другая половина - ледяная пустыня, покрытая замерзшими газами.

Венера - вторая по близости к Солнцу планета, почти такого же размера, как Земля, а её масса более 80% земной массы. По этим причинам Венеру называют близнецом или сестрой Земли. Однако поверхность и атмосфера этих двух планет совершенно различны. На Земле есть реки, озера, океаны и атмосфера, которой мы дышим. Венера - обжигающе горячая планета с плотной атмосферой, которая была бы губительной для человека. Венера получает от Солнца в два с лишним раза больше света и тепла, чем Земля, с теневой стороны на Венере господствует мороз более 20 градусов ниже нуля, так как сюда не попадают солнечные лучи. Планета имеет очень плотную, глубокую и облачную атмосферу, не позволяющую увидеть поверхность планеты. Спутников планета не имеет. Температура около 750 К по всей поверхности и днем, и ночью. Причина столь высокой температуры у поверхности Венеры - парниковый эффект: солнечные лучи легко проходят сквозь облака ее атмосферы и нагревают поверхность планеты, но тепловое инфракрасное излучение самой поверхности выходит сквозь атмосферу обратно в космос с большим трудом. Атмосфера Венеры состоит в основном из углекислого газа (CO2) - 97%. В виде малых примесей обнаружены соляная и плавиковая кислота. Днем поверхность планеты освещена рассеянным солнечным светом примерно с такой интенсивностью, как в пасмурный день на Земле. Ночью на Венере замечено много молний. Венера покрыта твердыми породами. Под ними циркулирует раскаленная лава, вызывающая напряжение тонкого поверхностного слоя. Лава постоянно извергается из отверстий и разрывов в твердых породах.

На поверхности Венеры обнаружена порода, богатая калием, ураном и торием, что в земных условиях соответствует составу вторичных вулканических пород. Таким образом, поверхностные породы Венеры оказались такими же, как на Луне, Меркурии и Марсе, излившимися магматическими породами основного состава.

О внутреннем строении Венеры известно мало. Вероятно, у нее есть металлическое ядро, занимающее 50% радиуса. Но магнитного поля у планеты нет вследствие ее очень медленного вращения.

Земля - третья от Солнца планета Солнечной системы. По форме Земля близка к эллипсоиду, сплюснутому у полюсов и растянутому в экваториальной зоне. Площадь поверхности Земли 510,2 млн. км², из которых примерно 70,8% приходится на Мировой океан. Суша составляет соответственно 29,2% и образует шесть материков и острова. Горы занимают свыше 1/3 поверхности суши.

Благодаря своим уникальным условиям Земля стала местом, где возникла и получила развитие органическая жизнь. Примерно 3,5 млрд. лет назад возникли условия, благоприятные для возникновения жизни. Homo sapiens (Человек разумный) как вид появился примерно полмиллиона лет назад.

Период обращения вокруг Солнца составляет 365 дней, при суточном вращении - 23 ч. 56 мин. Ось вращения Земли расположена под углом в 66.5º.

Атмосфера Земли состоит на 78% из азота и на 21% из кислорода. Наша планета окружена обширной атмосферой. В соответствии с температурой составом и физическими свойствами атмосферы можно разделить на разные слои. Тропосфера - это область, лежащая между поверхностью Земли и высотой в 11 км. Это довольно толстый и густой слой, содержащий большую часть водяных паров, находящихся в воздухе. В ней имеют место почти все атмосферные явления, которые непосредственно интересуют жителей Земли. В тропосфере находятся облака, атмосферные осадки и т.д. Слой отделяющий тропосферу от следующего атмосферного слоя - стратосферы, называется тропопауза. Это область весьма низких температур.

Луна - естественный спутник Земли и ближайшее к нам небесное тело. Среднее расстояние до Луны - 384000 километров, диаметр Луны около 3476 км. Не будучи защищена атмосферой, поверхность Луны нагревается днем до +110 С, а ночью остывает до -120° С. Происхождение Луны - предмет ряда гипотез. Одна из них основана на теориях Джинса и Ляпунова - Земля вращалась очень быстро и сбросила часть своего вещества, другая - на захвате Землей пролетавшего небесного тела. Наиболее правдоподобна гипотеза столкновения Земли с планетой, масса которой соответствует массе Марса, происшедшего под большим углом, в результате которого образовалось огромное кольцо из обломков, что и составило основу для Луны. Она образовалась вблизи Солнца за счет самых ранних дометаллических конденсатов при высоких температурах.

Марс - четвертая планета Солнечной системы.По диаметру он почти вдвое меньше Земли и Венеры. Среднее расстояние от Солнца составляет 1,52 а.е. Имеет два спутника - Фобос и Деймос.

Планета окутана газовой оболочкой - атмосферой, которая имеет меньшую плотность, чем земная. По составу она напоминает атмосферу Венеры и содержит 95,3% углекислого газа с примесью 2,7% азота.

Средняя температура на Марсе значительно ниже, чем на Земле около -40° С. При наиболее благоприятных условиях летом на дневной половине планеты воздух прогревается до 20° С. Но зимней ночью мороз может достигать -125° С. Такие резкие перепады температуры вызваны тем, что разреженная атмосфера Марса не способна долго удерживать тепло. Над поверхностью планеты дуют сильные ветры, скорость которых доходит до 100 м/с.

Водяного пара в атмосфере Марса совсем немного, но при низких давлении и температуре он находится в состоянии, близком к насыщению, и часто собирается в облака. Марсианское небо в ясную погоду имеет розоватый цвет, что объясняется рассеянием солнечного света на пылинках и подсветкой дымки оранжевой поверхностью планеты.

Поверхность Марса, на первый взгляд, напоминает лунную. Однако на самом деле его рельеф отличается большим разнообразием. На протяжении долгой геологической истории Марса его поверхность изменяли извержения вулканов.


.3 Планеты-гиганты


Планеты-гиганты - четыре планеты Солнечной системы: Юпитер, Сатурн, Уран, Нептун. Эти планеты, имеющие ряд сходных физических характеристик, также называют внешними планетами.

В отличие от планет земной группы, все они являются газовыми планетами, обладают значительно большими размерами и массами, более низкой плотностью, мощными атмосферами, быстрым вращением, а также кольцами (в то время как у планет земной группы таковых нет) и большим количеством спутников.

Планеты-гиганты очень быстро вращаются вокруг своих осей; менее 10 ч требуется Юпитеру, чтобы совершить один оборот. Причем экваториальные зоны планет-гигантов вращаются быстрее, чем полярные.

Планеты-гиганты находятся далеко от Солнца, и независимо от характера смены времен года на них всегда господствуют низкие температуры. На Юпитере вообще нет смены времен года, поскольку ось этой планеты почти перпендикулярна к плоскости ее орбиты.

Планеты-гиганты отличаются большим числом спутников; у Юпитера их обнаружено к настоящему времени 16, Сатурна - 17, Урана - 16 и только у Нептуна - 8. Замечательная особенность планет-гигантов - кольца, которые открыты не только у Сатурна, но и у Юпитера, Урана и Нептуна.

Важнейшая особенность строения планет-гигантов заключается в том, что эти планеты не имеют твердых поверхностей, так как они состоят в основном из водорода и гелия. В верхних слоях водородно-гелиевой атмосферы Юпитера в виде примесей встречаются химические соединения, углеводороды (этан, ацетилен), а также различные соединения, содержащие фосфор и серу, окрашивающие детали атмосферы в красно-коричневые и желтые цвета. Таким образом, по своему химическому составу планеты-гиганты резко отличаются от планет земной группы.

В отличие от планет земной группы, обладающих корой, мантией и ядром, на Юпитере газообразный водород, входящий в состав атмосферы, переходит в жидкую, а затем и в твердую (металлическую) фазу. Появление таких необычных агрегатных состояний водорода связано с резким увеличением давления по мере погружения в глубину.

На долю планет гигантов приходится 99,5% всей массы солнечной системы (исключая Солнце). Из четырех гигантских планет лучше всего изучен Юпитер, самая большая и ближайшая из этой группы к Солнцу планета. Он в 11 раз больше 3 емли по диаметру и в 300 раз по массе. Период его обращения вокруг Солнца почти 12 лет.

Поскольку планеты-гиганты сильно удалены от Солнца, их температура (по крайней мере над их облаками) очень низка: на Юпитере - 145°С, на Сатурне - 180°С, на Уране и Нептуне еще ниже.

Средняя плотность Юпитера 1,3 г/см3, Урана 1,5 г/см3, Нептуна 1,7 г/см3, а Сатурна даже 0,7 г/см3, то есть меньше, чем плотность воды. Малая плотность и обилие водорода отличают планеты-гиганты от остальных.

Единственным в своем роде образованием в солнечной системе является плоское кольцо толщиной несколько километров, окружающее Сатурн. Оно расположено в плоскости экватора планеты, которая наклонена к плоскости его орбиты на 27°. Поэтому в течение 30-летнего оборота Сатурна вокруг Солнца кольцо видно нам то довольно раскрытым, то точно с ребра, когда его можно разглядеть в виде тонкой линии лишь в большие телескопы. Ширина этого кольца такова, что по нему, будь оно сплошное, мог бы катиться земной шар.


Заключение


Таким образом, выделяют две теории происхождения Вселенной: теорию стабильного состояния, согласно которой материя, энергия, пространство и время существовали всегда, и теорию Большого взрыва, которая гласит, что Вселенная, представляющаяся бесконечно малым раскаленным сгустком, внезапно взорвалась, в результате чего появились облака материи, из которых впоследствии появились галактики.

Широкое распространение получили три точки зрения на процесс образования планет: 1) планеты образовались из того же газопылевого облака, что и Солнце (И. Кант); 2) облако, из которого образовались планеты, захвачено Солнцем при его обращении вокруг центра Галактики (О.Ю. Шмидт); 3) это облако отделилось от Солнца в процессе его эволюции
(П. Лаплас, Д. Джинс и др.). Время существования Земли делится на 2 периода: ранняя история и геологическая история. Ранняя история Земли представлена такими этапами развития как: фаза рождения, фаза расплавления внешней сферы и фаза первичной коры (лунная фаза). Геологическая история- это период развития Земли как планеты в целом, особенно ее коры и природной среды. Геологическая история Земли характеризуется возникновением атмосферы и переходом водяного пара в жидкую воду; эволюция биосферы представляет собой процесс развития органического мира, начинающийся с простейший клеток архейского периода, и закончившийся возникновением млекопитающих в кайнозойском периоде.

Процесс зарождения Земли имел свои особенности. Примерно 4,6-3,9 млрд лет назад происходила ее интенсивная бомбардировка межпланетными обломками и метеоритами. Первичное вещество сжималось под действием тяготения, принимало форму шара, недра которого разогревались.

Происходили процессы перемешивания, шли химические реакции, более легкие породы выдавливались из глубины на поверхность и образовывали земную кору, тяжелые - оставались внутри. Разогрев сопровождался бурной вулканической деятельностью, пары и газы вырывались наружу.

Планеты расположены в следующем порядке от Солнца:Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон.

Планеты земной группы имеют твердую оболочку в отличие от планет-гигантов, которые имеют газообразную. Планеты-гиганты в несколько раз больше планет земной группы. Планеты-гиганты имеют низкую среднюю плотность, по сравнению с другими планетами. Планеты земной группы обладают корой мантией и ядром, на Юпитере же газообразный водород, входящий в состав атмосферы переходит сначала в жидкую, затем в твердую металлическую фазу. Появление таких агрегатных состояний водорода связано с резким увеличением давления по мере погружения в глубину. Планеты-гиганты также имеют мощные атмосферы и кольца.


Библиографический список


1.Громов А.Н. Удивительная Солнечная система. М.: Эксмо, 2012. -470 с. с. 12-15, 239-241, 252-254, 267-270.

2.Гусейханов М.К. Концепции современного естествознания: Учебник. М.: «Дашков и Ко», 2007. - 540 с. с. 309, 310-312, 317-319, 315-316.

.Дубнищева Т.Я. Концепции современного естествознания: учебное пособие для студентов вузов. М.: «Академия», 2006. - 608 с. с. 379, 380

.Характеристика планет-гигантов: #"justify">.Строение Солнечной системы: http://o-planete.ru/zemlya-i-vselennaya/stroenie-solnetchnoy-sistem.html


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

К настоящему времени известны многие гипотезы о происхождении Солнечной системы, в том числе предложенные независимо немецким философом И.Кантом (1724-1804) и французским математиком и физиком П.Лапласом (1749-1827). Точка зрения И. Канта заключалась в эволюционном развитии холодной пылевой туманности, в ходе которого сначала возникло центральное массивное тело - Солнце, а потом родились и планеты. П. Лаплас считал первоначальную туманность газовой и очень горячей, находящейся в состоянии быстрого вращения. Сжимаясь под действием силы всемирного тяготения, туманность вследствие закона сохранения момента импульса вращалась все быстрее и быстрее. Под действием больших центробежных сил, возникающих при быстром вращении в экваториальном поясе, от него последовательно отделялись кольца, превращаясь в результате охлаждения и конденсации в планеты. Таким образом, согласно теории П. Лапласа, планеты образовались раньше Солнца. Несмотря на такое различие между двумя рассматриваемыми гипотезами, обе они исходят от одной идеи - Солнечная система возникла в результате закономерного развития туманности. И поэтому такую идею иногда называют гипотезой Канта-Лапласа. Однако от этой идеи пришлось отказаться из-за множества математических противоречий, и на смену ей пришло несколько «приливных теорий».

Наиболее знаменитая теория была выдвинута сэром Джеймсом Джинсом, известным популяризатором астрономии в годы между Первой и Второй мировыми войнами. (Он также был ведущим астрофизиком, и лишь в конце своей карьеры обратился к созданию книг для начинающих.)

Рис. 1. Приливная теория Джинса. Звезда проходит рядом с Солнцем, вытягивая

из него вещество (рис. А и В); планеты формируются из этого материала (рис. С)

Согласно Джинсу, планетное вещество было «вырвано» из Солнца под воздействием близко проходившей звезды, а затем распалось на отдельные части, образуя планеты. При этом наиболее крупные планеты (Сатурн и Юпитер) находятся в центре планетной системы, где некогда находилась утолщенная часть сигарообразной туманности.

Если бы дела действительно обстояли таким образом, то планетные системы были бы чрезвычайно редким явлением, так как звезды отделены друг от друга колоссальными расстояниями, и вполне возможно, что наша планетная система могла бы претендовать на роль единственной в Галактике. Но математики снова бросились в атаку, и в конце концов приливная теория присоединилась к газообразным кольцам Лапласа в мусорной корзине науки. 1

2. Современная теория происхождения солнечной системы

Согласно современным представлениям, планеты солнечной системы образовались из холодного газопылевого облака, окружавшего Солнце миллиарды лет назад. Такая точка зрения наиболее последовательно отражена в гипотезе российского ученого, академика О.Ю. Шмидта (1891-1956), который показал, что проблемы космологии можно решить согласованными усилиями астрономии и наук о Земле, прежде всего географии, геологии, геохимии. В основе гипотезы О.Ю. Шмидта лежит мысль об образовании планет путем объединения твердых тел и пылевых частиц. Возникшее около Солнца газопылевое облако сначала состояло на 98% из водорода и гелия. Остальные элементы конденсировались в пылевые частицы. Беспорядочное движение газа в облаке быстро прекратилось: оно сменилось спокойным движением облака вокруг Солнца.

Пылевые частицы сконцентрировались в центральной плоскости, образовав слой повышенной плотности. Когда плотность слоя достигла некоторого критического значения, его собственное тяготение стало «соперничать» с тяготением Солнца. Слой пыли оказался неустойчивым и распался на отдельные пылевые сгустки. Сталкиваясь друг с другом, они образовали множество сплошных плотных тел. Наиболее крупные из них приобретали почти круговые орбиты и в своем росте начали обгонять другие тела, став потенциальными зародышами будущих планет. Как более массивные тела, новообразования присоединяли к себе оставшееся вещество газопылевого облака. В конце концов сформировалось девять больших планет, движение которых по орбитам остается устойчивым на протяжение миллиардов лет.

С учетом физических характеристик все планеты делятся на две группы. Одна из них состоит из сравнительно небольших планет земной группы - Меркурия, Венеры, Земли и Марса. Их вещество отличается относительно высокой плотностью: в среднем около 5,5 г/см 3 , что в 5,5 раза превосходит плотность воды. Другую группу составляют планеты -гиганты: Юпитер, Сатурн, Уран и Нептун. Эти планеты обладают огромными массами. Так, масса Урана равна 15 земным массам, а Юпитера- 318. Состоят планеты-гиганты главным образом из водорода и гелия, а средняя плотность их вещества близка к плотности воды. Судя по всему, у этих планет нет твердой поверхности, подобной поверхности планет земной группы. Особое место занимает девятая планета - Плутон, открытая в марте 1930 г. По своим размерам она ближе к планетам земной группы. Не так давно обнаружено, что Плутон - двойная планета: она состоит из центрального тела и очень большого спутника. Оба небесных тела обращаются вокруг общего центра масс.

В процессе образования планет их деление на две группы обусловливается тем, что в далеких от Солнца частях облака температура была низкой и все вещества, кроме водорода и гелия, образовали твердые частицы. Среди них преобладал метан, аммиак и вода, определившие состав Урана и Нептуна. В составе самых массивных планет - Юпитера и Сатурна, кроме того, оказалось значительное количество газов. В области планет земной группы температура была значительно выше, и все летучие вещества (в том числе метан и аммиак) остались в газообразном состоянии, и, следовательно, в состав планет не вошли. Планеты этой группы сформировались в основном из силикатов и металлов. 2

И бесчисленных мелких метеорных частиц и пылинок. Девять планет явл. главными спутниками Солнца, но и у них суммарная масса в 743 раза меньше . Суммарная же масса всех остальных малых тел Солнечной системы, включая облако комет, составляет .

Поскольку Солнце явл. одной из , вопросы его происхождения и развития рассматриваются теорией , а в изучении происхождения Солнечной системы наиболее интересен вопрос об образовании планет, в частности Земли. Выяснение происхождения и развития Земли имеет большое принципиальное и практическое значение.

Предпринимаются попытки поиска планетных систем у ближайших к нам звезд (см. ). В согласии с совр. представлениями о звезды с планетными системами могли бы составлять промежуточный класс между одиночными и двойными звездами. Не исключено, что строение планетных систем и способы их формирования могут быть весьма различными. Строение Солнечной системы обладает рядом закономерностей, указывающих на совместное образование всех планет и Солнца в едином процессе.

Такими закономерностями являются: движение всех планет в одном направлении по эллиптич. орбитам, лежащим почти в одной плоскости; вращение Солнца в том же направлении вокруг оси, близкой к перпендикуляру относительно центральной плоскости планетной системы; вращение в том же направлении большинства планет (за исключением Венеры, к-рая очень медленно вращается в обратном направлении, и Урана, к-рый вращается как бы лежа на боку); обращение в том же направлении большинства спутников планет; закономерное возрастание расстояний планет от Солнца; деление планет на родственные группы, отличающиеся по массе, хим. составу и количеству спутников (группа близких к Солнцу планет земного типа и далекие от Солнца планеты-гиганты, также подразделяющиеся на две группы); наличие пояса малых планет между орбитами Марса и Юпитера.

2. Развитие планетной космогонии

В 1775 г. нем. ученый И. Кант пытался объяснить единообразный характер движения планет формированием их из рассеянного вещества (пылевого облака), простирающегося до границ совр. планетной системы и вращающегося вокруг Солнца.

В 1796 г. франц. ученый П. Лаплас выдвинул гипотезу об образовании Солнца и всей Солнечной системы из сжимающейся газовой туманности. Согласно Лапласу, часть газового вещества отделилась от центрального сгустка под действием возросшей при сжатии центробежной силы, что следует из закона сохранения момента количества движения. Это вещество послужило материалом для образования планет. И Кант, и Лаплас рассматривали образование планет из рассеянного вещества, и поэтому часто говорят о единой гипотезе Канта-Лапласа. Гипотеза Лапласа долгое время владела умами ученых, но трудности, с к-рыми она встретилась, в частности при объяснении медленности совр. вращения Солнца, заставили астрономов обратиться к др. гипотезам. В конце 19 в. появилась гипотеза амер. ученых Ф. Мультона и Т. Чемберлена об образовании планет из мелких твердых частиц, названных ими планетезималями. Они ошибочно считали, что обращающиеся вокруг Солнца планетезимали могли возникнуть путем застывания вещества, выброшенного Солнцем в виде огромных протуберанцев. (Такое образование планетезималей противоречит закону сохранения момента количества движения.) В то же время в планетезимальной гипотезе были правильно обрисованы многие черты процесса образования планет. В 20-30-х гг. 20 в. широкой известностью пользовалась гипотеза англ. астронома Дж. Джинса, считавшего, что планеты образовались из вещества, вырванного из Солнца притяжением пролетевшей поблизости звезды. Однако в конце 30-х гг. выяснилось, что гипотеза Джинса не способна объяснить огромные размеры планетной системы. Чтобы вырвать вещество из Солнца, звезда должна была пролететь очень близко от него, а в таком случае это вещество и возникшие из него планеты должны были бы кружиться в непосредственном соседстве с Солнцем. Кроме того, вырванное вещество было бы весьма горячим, поэтому оно скорее рассеялось бы в пространстве, чем собралось в планеты. После крушения гипотезы Джинса планетная космогония вернулась к классич. идеям Канта и Лапласа об образовании планет из рассеянного вещества.

В 1943 г. О.Ю. Шмидт выдвинул идею об аккумуляции планет из роя холодных тел и частиц, к-рый, по его представлениям, был захвачен Солнцем. В отличие от предшествующих космогонич. гипотез, рассматривавших образование планет из раскаленных газовых сгустков, согласно гипотезе Шмидта, Земля образовалась из холодных твердых тел и сначала была относительно холодной.

Шмидт считал, что вопросы происхождения допланетного облака, образования планет и их эволюции могут рассматриваться в нек-рой степени независимо. Работами Шмидта и ряда др. советских ученых (Л.Э. Гуревича, А.И. Лебединского, Б.Ю. Левина, В.С. Сафронова) выяснены осн. черты эволюции протопланетного облака и процесса формирования планет.

Весь процесс можно условно разделить на два этапа. На первом этапе из пылевого компонента облака образовалось множество "промежуточных" тел размером в сотни км. Этот процесс мог идти следующим путем. Во вращающемся газово-пылевом облаке пыль под действием гравитации опускалась к центральной плоскости, что вело к образованию пылевого субдиска; при достижении в пылевом слое критич. плотности в результате субдиск распался на множество пылевых сгущений; столкновения сгущений вызывали объединение и сжатие большинства из них и образование компактных тел астероидных размеров. На втором этапе из роя "промежуточных" тел и из обломков аккумулировались планеты. Сперва тела двигались по круговым орбитами в плоскости породившего их пылевого слоя. Они росли, сливаясь друг с другом и вычерпывая окружающее рассеянное вещество - остатки "первичной" пыли и обломки, образовавшиеся в процессе столкновений "промежуточных" тел с большой относительной скоростью. Гравитационное взаимодействие "промежуточных" тел, усиливавшееся по мере их роста, постепенно изменяло их орбиты, увеличивая ср. эксцентриситет и ср. наклон к центральной плоскости диска. Те из тел, к-рые вырывались вперед в процессе роста, оказались зародышами будущих планет. При объединении многих тел в планеты произошло усреднение индивидуальных св-в движения отдельных тел, и поэтому орбиты планет получились почти круговыми и компланарными. Самые крупные планеты - Юпитер и Сатурн - на осн. стадии аккумуляции вбирали в себя не только твердые тела, но и газы. Анализ процесса аккумуляции планет из роя твердых тел позволил Шмидту и его последователям указать путь к объяснению прямого вращения планет и закона планетных расстояний.

Одним из главных экспериментальных доводов в пользу образования планет земной группы не из газовых или газово-пылевых сгустков, а путем аккумуляции твердого вещества явл. большой дефицит на Земле, а также на Венере и Марсе тяжелых инертных газов Ne, Ar (за исключением радиогенного изотопа 40 Ar), Kr и Xe по сравнению с их солнечным и космич. .

Изучение процесса аккумуляции планет земной группы показало, что практически все твердое вещество из зоны формирования этих планет вошло в их состав и только ничтожно малая доля была выброшена из этой зоны гравитац. возмущениями растущих планет. Количество твердого вещества, выброшенного из зоны планет-гигантов, было больше, но не превышало массу самих планет. Это явл. веским доводом в пользу того, что общая масса протопланетного облака составляла всего неск. % от .

Особой проблемой, служившей пробным камнем для многих космогонич. гипотез, оставалась проблема распределения момента количества движения в Солнечной системе: хотя масса планет составляет менее 1% массы Солнца, в их орбитальном движении заключено более 98% общего момента количества движения всей Солнечной системы.

В 60-х гг. 20 в. появились первые приближенные количеств. теории совместного образования Солнца и протопланетного облака (Ф. Хойл, Великобритания, 1960 г.; А. Камерон, США, 1962 г.; Э. Шацман, Франция, 1967 г.). В этих теориях в той или иной форме рассматривалось отделение вещества от сжимающегося протосолнца вследствие наступления у него ротац. неустойчивости (при уравнивании на экваторе центробежной силы и силы притяжения).

Хойл и Шацман стремились показать расчетами, что протопланетное облако имело минимально допустимую массу. Для объяснения распределения момента количества движения между Солнцем и планетами Хойл использовал интересную идею шведского астрофизика Х. Альвена о возможности магн. сцепления вращающегося Солнца и ионизованного вещества протопланетного облака, благодаря к-рому Солнце может передать момент близлежащим частям протопланетного облака. На б"ольших расстояниях, где магн. поле ослаблено, перенос вещества и момента осуществлялся, по его мнению, с помощью . Эти идеи используются и в современных моделях образования Солнечной системы.

Медленность вращения совр. Солнца Шацман объяснял потерей нек-рой части вещества с поверхности Солнца, происшедшей уже после превращения протосолнца в Солнце. Улетающее ионизованное вещество вплоть до больших расстояний продолжает взаимодействовать с магн. полем вращающегося Солнца и приобретает значит. момент количества движения, к-рый и уносит с собой. Это объяснение медленности вращения Солнца считается наиболее вероятным.

Камерон в своих работах 60-х гг. предполагал, что Солнечная система возникла в результате сжатия (коллапса) межзвездного облака с массой , и развивал теорию эволюции такого облака, обходя молчанием встречающиеся трудности. Массивное протопланетное облако, отделившееся от протосолнца, должно было дополнительно разогреться в результате выделения при его сжатии к центральной плоскости. При этом все вещество облака должно было перейти в газовую фазу. По мере последующего остывания протопланетного облака в нем должна была происходить конденсация сначала наименее летучих, т.е. наиболее тугоплавких, веществ, а затем все более летучих. В более поздних работах Камерон рассматривал протопланетное облако умеренной массы, для к-рого начальная темп-ра в зоне формирования планет земной группы и метеоритов должна была составлять всего неск. сотен o С. В наиболее общем случае "облака малой массы темп-ра должна быть еще ниже. Следствия, вытекающие из этих представлений, были подвергнуты проверке при анализе вещества метеоритов.

Начиная с 70-х гг. 20 в. лабораторные анализы метеоритов, к-рые на протяжении всей своей истории не подвергались сильному нагреву, указывали на присутствие в них вещества, напоминающего, по-видимому, . Его присутствие в количестве хотя бы неск. % теперь уже не вызывает сомнений. Согласно Д. Клейтону (США, 1978 г.), почти вся пыль в первичном протопланетном облаке имела межзвездное происхождение.

Определения изотопного состава земных образцов и метеоритов, а также лунных образцов показали его высокую однородность (за исключением следов фракционирования изотопов при образовании отдельных образцов). Это указывает на хорошую перемешанность осн. массы протопланетного вещества. Однако ряд обнаруженных изотопных аномалий в нек-рых метеоритах свидетельствует о том, что в протопланетном облаке присутствовали порции вещества, не перемешанные с осн. массой вещества. По-видимому, в протопланетном облаке не было полного испарения межзвездной пыли, при к-ром различия изотопного состава были бы сглажены. Еще в 1960 г. исследования изотопного состава Xe из метеоритов выявили присутствие в нем дочернего продукта распада - короткоживущего радиоактивного изотопа 129 I, а в 1965 г. - продуктов распада 244 Pu (периоды полураспада и лет соответственно). Присутствие газообразных химических инертных продуктов распада показывает, что нек-рое время после нуклеосинтеза этих изотопов образовалась твердая фаза, где и произошел распад сохранившейся части этих изотопов. Одним из важнейших процессов нуклеосинтеза и единственным процессом синтеза Pu явл. взрывы . Возникло естеств. предположение, что незадолго до сжатия межзвездного газово-пылевого облака, приведшего к образованию протосолнца с протопланетным диском, неподалеку произошел взрыв сверхновой, инжектирующей в облако свежие продукты нуклеосинтеза. Присутсвие в метеоритах продуктов распада изотопов 129 I и 244 Pu интерпретировалось как указание на то, что между взрывом сверхновой и образованием твердого метеоритного вещества прошло всего неск. периодов полураспада, т.е. время ~ 10 7 -10 8 лет. Этот промежуток времени, названный интервалом формирования, был сокращен до 10 6 -10 7 лет, когда удалось выявить в ряде метеоритов присутсвие продуктов распада еще более короткоживущих изотопов - 26 Al и 107 Pd (периоды полураспада и лет).

Если исходить из идеи о сохранении межзвездных пылинок, понятие "интервал формирования" теряет свой смысл. Конденсация твердого веществав и образование пылинок начинаются еще на стадии разлета продуктов взрыва сверхновой, и количество продуктов распада короткоживущих изотопов, присутствующих в метеоритном веществе, зависит от доли свежей пыли, инжектированной в межзвездное облако либо перед его сжатием (коллапсом), либо в уже сформировавшееся допланетное облако. Камерон и С. Труран (США, 1970 г.) предложили, что взрыв близко расположенной сверхновой не только инжектировал свежее вещество в протосолнечную туманность, но и содействовал ее сжатию.

Достижения астрофизики и планетологии в 70-х гг. 20 в.: первые расчеты коллапса, учитывающие вращение сжимающихся протозвезд; исследование областей совр. звездообразования в Галактике; снимки поверхностей планет Солнечной системы и их спутников, изобилующих ударными кратерами, - наглядно свидетельствуют о правильности общих основ совр. теории формирования планет.

Наряду с исследованиями, определяющими генеральную линию развития планетной космогонии, существуют представления, не пользующиеся широким признанием. Так, Альвен разрабатывает с 40-х гг. 20 в. гипотезу о том, что образование планетной системы на всех этапах определялось в основном эл.-магн. силами. Для этого молодое Солнце должно было обладать очень сильным магн. полем, в тысячи раз более сильным, чем современное. Газы межзвездного облака, падавшего к Солнцу под действием его притяжения, постепенно ионизовались и по мере ускорения своего падения под влиянием магн. поля Солнца переходили от падения к обращению вокруг Солнца. Первыми на больших расстояниях от Солнца должны были ионизоваться металлы и др. вещества, обладающими низкими потенциалами , а последним ближе всего к Солнцу должен был ионизоваться водород. Хим. состав планет дает обратную картину распределения водорода и более тяжелых элементов. Вследствие этого и искусственности ряда др. предположений гипотеза Альвена почти не имеет сторонников.

Англ. ученый М. Вульфсон в 60-70-х гг. 20 в. пытался развивать гипотезу, согласно к-рой приобретение Солнцем протопланетного вещества объяснялось сочетанием приливного воздействия и захвата: Солнце захватило сгустки вещества, вырванного его притяжением из пролетавшей мимо разреженной протозвезды. Как и гипотеза Джинса, эта схема имеет много слабых мест и не пользуется популярностью.

3. Современное состояние планетной космогонии:
Образование Солнца и протопланетного облака

Данные, накопленные астрофизикой, говорят о том, что звезды, в т.ч. и звезды солнечного типа, образуются в газово-пылевых комплексах с массой . Примером такого комплекса явл. известная туманность Ориона, где звезды продолжают образовываться. По-видимому, и Солнце образовалось с группой звезд в ходе сложного процесса сжатия и фрагментации подобной массивной туманности.

Начавшее сжиматься массивное облако, участвующее в общем вращении Галактики, не может сжаться до высокой плотности из-за большого момента вращения. Поэтому оно стремится распасться на отдельные фрагменты. Часть момента вращения при этом переходит в момент относительного движения фрагментов. Процесс последовательной фрагментации, сопровождаемый беспорядочными (турбулентными) движениями, ударными волнами, запутыванием магн. полей, приливным взаимодействием фрагментов, сложен и понят далеко не достаточно. Однако эволюция изолированного фрагмента, имеющего массу и обладающего не слишком большим начальным моментом вращения K (), уже может быть прослежена путем расчетов на ЭВМ. Расчеты показывают, что при большом моменте вращения вместо протозвезды может возникнуть неустойчивое кольцо, разбивающееся на фрагменты. Таким путем, возможно, формируются кратные звезды. При много меньшем значении K более вероятно образование одиночной звезды. В 80-е гг. 20 в. появились детальные расчеты по образованию около сжимающейся протозвезды (Солнца) уплощенного газово-пылевого диска. В экваториальной области сжимающейся протозвезды должна существовать область с интенсивным перераспределением момента вращения. В случае эффективной турбулентности, вызванной продолжающейся аккрецией газа, все новые порции вещества с избыточным моментом выносятся наружу, образуя вращающийся газово-пылевой диск. Часть вещества из сжимающейся оболочки аккрецирует непосредственно на диск. Не исключено, что в зависимости от начальных условий в туманности, влияния соседних фрагментов, а также вспыхивающих поблизости новых и сверхновых звезд массы и размеры образующихся дисков могут варьировать в широких пределах. Важную роль в ранней эволюции таких дисков играет активность молодой звезды - ее излучение в рентг. и УФ-диапазонах, общая светимость и интенсивность . Имеются данные, что рентг. и УФ-излучение молодых звезд солнечной массы может на порядки превышать интенсивность коротковолнового излучения совр. Солнца. С использованием ур-ний гидродинамики были построены модели околосолнечного газово-пылевого диска, вращающегося вокруг такого активного Солнца. Согласно этим моделям, темп-ра в центральной плоскости диска падает с расстоянием от Солнца как r -1 -r -1/2 , составляя 300-400 К на расстоянии r =1 а.е. и лишь десятки кельвинов на а.е. Внеш. разреженные слои диска могли нагреваться коротковолновым излучением Солнца до очень высоких темп-р, что вело к потере газа (его рассеянию в межзвездное пространство). Этому процессу способствовал также интенсивный солнечный ветер. Однако структуру внутренних, более холодных областей диска хорошо отражает модель, положенная в основу исследований Шмидта и его сотрудников.

Процесс образования планет и их спутников

При моделировании отдельных стадий эволюции протопланетного облака и образования планет (рис.) большое внимание уделяется начальной стадии - опусканию пылинок в центральной плоскости диска и их слипанию в условиях допланетного облака. От быстроты роста пылинок зависит время их опускания и образование уплощенного пылевого диска. Последующий распад пылевого диска, образование пылевых сгущений и их превращение в рой компактных тел астероидных размеров с космогонич. точки зрения был весьма быстрым (0,15 аккумулирующиеся тела сливаются в единый звездообразный спутник Солнца. Это явл. еще одним подтверждением правильности модели маломассивного допланетного облака. Численное моделирование в принципе позволяет определять одновременно распределение масс и распределение скоростей допланетных тел. Однако сложность учета гравитац. взаимодействия многих тел долгое время не позволяла получать надежные результаты. Недавно Дж. Везерил (США) проделал весьма трудоемкие расчеты динамики роя тел в "зоне питания" планет земной группы, к-рые подтвердили как характер распределения скоростей на заключительном этапе роста планет, так и время аккумуляции Земли (~ 10 8 лет), оценивавшиеся ранее аналитич. методами. Процесс образования планет земной группы прослежен уже достаточно детально. Получаемым методом численного моделирования расстояния между планетами, их массы, периоды собств. вращения, наклоны осей удовлетворительно согласуются с наблюдениями. Процесс образования планет-гигантов был более сложным, и многие его детали еще предстоит выяснить. Существуют две гипотезы о пути формирования Юпитера и Сатурна, содержащих много водорода и гелия (по своему составу они ближе к Солнцу, чем др. планеты). Первая гипотеза ("контракции") объясняет "солнечный" состав планет-гигантов тем, что в протопланетном диске большой массы образовались массивные газово-пылевые сгущения - протопланеты, к-рые затем в процессе гравитац. сжатия превратились в планеты-гиганты. Эта гипотеза не объясняет удаления из Солнечной системы больших излишков вещества, не вошедшего в планеты, а также причин отличия состава Юпитера и Сатурна от солнечного (Сатурн содержит больше тяжелых хим. элементов, чем Юпитер, к-рый, в свою очередь, содержит их относительно больше, чем Солнце). Согласно второй гипотезе ("аккреции"), образование Юпитера и Сатурна протекало в два этапа. На первом, длившемся ок. лет с области Юпитера и лет в области Сатурна, происходила аккумуляция твердых тел таким же образом, как в области планет земной группы. Когда самые крупные тела достигли критич. массы (ок. двух масс Земли), начался второй этап - газа на эти тела, длившийся не менее 10 5 -10 6 лет. На первом этапе из области Юпитера диссипировала часть газа, и его состав оказался отличным от солнечного; еще больше это проявилось у Сатурна. На стадии аккреции наибольшая темп-ра наружных слоев Юпитера достигала 5000 К, а у Сатурна - ок. 2000 К. Значит. прогревание Юпитером своей окрестности определило силикатный состав его близких спутников. Согласно гипотезе контракции на ранней стадии планеты-гиганты также имели высокие темп-ры, однако динамика процессов в рамках гипотезы аккреции более обоснована. Образование Урана и Нептуна, содержащих всего 10-20% H и He, также лучше объясняется второй гипотезой. К моменту достижения ими критич. массы (за время ~ 10 8 лет) б"ольшая часть газа уже покинула Солнечную систему.

Малые тела Солнечной системы - и - представляют собой остатки роя "промежуточных" тел. Астероиды - это каменистые тела внутр. околосолнечной зоны, кометы - каменисто-ледяные тела зоны планет-гигантов. Массы планет-гигантов еще до завершения их роста стали столь большими, что своим притяжением начали очень сильно изменять орбиты пролетавших мимо них малых тел. В результате нек-рые из них приобрели очень вытянутые орбиты, в т.ч. и орбиты, уходящие далеко за пределы планетной системы. На тела, удалявшиеся дальше 20-30 тыс. а.е. от Солнца, заметное гравитац. воздействие оказывали ближайшие звезды. В большинстве случаев воздействие звезд приводило к тому, что малые тела переставали заходить в область планетных орбит. Планетная система оказалась окруженной роем каменисто-ледяных тел, простирающимся до расстояний 10 5 а.е. (~ 1 пк) и являющимся источником ныне наблюдаемых комет. Существование кометного облака установил нидерландский астроном Я. Оорт (1950 г.). Влияние ближайших звезд может иногда столь сильно возмутить орбиту каменисто-ледяного тела, что оно уйдет совсем из Солнечной системы, а иногда может перевести его на орбиту, проходящую в окрестности Солнца. Вблизи Солнца ледяные тела начинают испарятсья под действием его лучей и становятся видимыми - возникает явление кометы.

Астероиды сохранились до нашего времени благодаря тому, что подавляющее большинство их движется в широком промежутке между орбитами Марса и Юпитера. Аналогичные каменистые тела, некогда существовавшие во всей зоне планет земной группы, давно присоединились к этим планетам либо разрушились при взаимных столкновениях, либо были выброшены за пределы этой зоны благодаря гравитац. воздействию планет.

Крупнейшие из совр. астероидов - поперечником в 100 км и более - образовались еще в эпоху формирования планетной системы, а средние и мелкие в большинстве своем явл. обломками крупных астероидов, раздробившихся при столкновениях. Благодаря столкновениям астероидных тел непрерыво пополняется запас пылевого вещества в межпланетном пространстве. Др. источником мелких твердых частиц явл. распад комет при пролете их вблизи Солнца.

Недра "первичных" крупных астероидов подвергались, по-видимому, разогреву примерно до 1000 o С, что отразилось на составе и структуре их вещества. Мы знаем об этом благодаря тому, что на поверхность Земли выпадают мел-кие обломки астероидов - , состав и физ. св-ва к-рых указывают, что они прошли стадии нагрева и дифференциации вещества. Причины разогрева астероидов до конца не ясны. Возможно, нагрев был связан с выделением теплоты при распаде короткоживущих радиоактивных изотопов; астероиды могли быть также нагреты взаимными столкновениями.

Нек-рые метеориты представляют собой наилучшие из доступных нам образчиков "первичного" планетного вещества. По сравнению с земными горными породами они несравненно меньше изменены последующими физ.-хим. процессами. Возрасты метеоритов, определяемые по содержанию радиоактивных элементов и продуктов их распада, характеризуют в то же время возраст всей Солнечной системы. Он оказывается равным ок. 4,6 млрд. лет. Следовательно, длительность процесса формирования планет незначительна по сравнению с временем их дальнейшего существования.

Происхождение систем регулярных спутников планет, движущихся в направлении вращения планеты по почти круговым орбитам, лежащим в плоскости ее экватора, авторы космогонич. гипотез обычно объясняют повторением в малом масштабе того же процесса, к-рый они предлагают для объяснения образования планет Солнечной системы. Системы регулярных спутников имеются у Юпитера, Сатурна и Урана, к-рые обладают также кольцами из мелких твердых частиц. У Нептуна нет регулярной системы спутников и, по-видимому, нет колец. Совр. планетная космогония объясняет образование регулярных спутников эволюцией протоспутниковых дискообразных poев частиц, возникших в результате неупругих столкновений вблизи данной планеты планетезималей, двигавшихся по околосолнечным орбитам.

В системе регулярных спутников Юпитера имеется деление на две группы: силикатную и водно-силикатную. Различия в хим. составе спутников показывают, что молодой Юпитер был горячим (нагрев мог быть обусловлен выделением гравитац. энергии при аккреции газа). В системе спутников Сатурна, состоящих в основном из льда, нет деления на две группы, что связано с более низкой темп-рой в окрестностях Сатурна, при к-рой могла конденсироваться вода.

Происхождение иррегулярных спутников Юпитера, Сатурна и Нептуна, т. е. спутников, обладающих обратным движением, а также небольшого внеш. спутника Нептуна, обладающего прямым движением по вытянутой орбите, объясняют захватом.

У медленно вращающихся планет Меркурия и Венеры спутников нет. Они, по-видимому, испытали приливное торможение со стороны планеты и упали в конце концов на её поверхность. Действие приливного трения проявилось также в системах Земля-Луна и Плутон-Харон, где спутники, образуя с планетой двойную систему, всегда повёрнуты к планете одним и тем же полушарием.

Объяснение происхождения Луны потребовало детального исследования св-в околоземного роя частиц, существование к-рого поддерживалось в течение всего времени аккумуляции Земли неупругими столкновениями частиц в ее окрестностях.

Образование роя достаточной массы возможно лишь за счёт многочисл. столкновений наиболее мелкой фракции межпланетных частиц. Динамика роя позволяет подойти к объяснению различий в хим. составе Луны и Земли, черпавших вещество из одной и той же зоны. Преимуществ. попадание в рой мелких частиц могло одновременно привести к обогащению роя силикатным веществом, т. к. именно каменистые тела при столкновениях образуют мелкую пыль (в отличие от металлич. тел). На стадии мелкодисперсного вещества могли быть частично потеряны и летучие вещества, дефицит к-рых был обнаружен в лунных породах. Из спутникового роя могла образоваться система из неск. крупных спутников, орбиты к-рых с разной скоростью эволюционировали под действием приливного трения и к-рые в конечном счете объединились в одно тело - Луну. Анализ состава и определения возраста доставленных в 70-х гг. 20 в. на Землю лунных пород показал, что Луна еще в ходе своего образования или вскоре после этого была разогрета и прошла магматич. дифференциацию, в результате к-рой сформировалась лунная кора. Изобилие крупных ударных кратеров на материковой части лунной поверхности показывает, что кора успела затвердеть ещё до того, как затухла интенсивная бомбардировка Луны формировавшими ее телами. Слияние Луны из неск. крупных тел (протолун) дает быстрое нагревание до 1000 К ее поверхностного слоя толщиной в сотни км, что лучше согласуется с ранней дифференциацией вещества Луны. При медленной аккумуляции Луны из мелких частиц выделившейся гравитац. энергии недостаточно для требуемого нагрева Луны. Альтернативные гипотезы нагрева Луны в результате распада короткоживущих радиоактивных изотопов и нагрева электрич. токами, индуцированными интенсивным солнечным ветром, требуют неприемлемо быстрого образования Луны на самом раннем этапе формирования Солнечной системы. Итак, наиболее вероятным представляется образование Луны на околоземной орбите, однако в литературе продолжают обсуждаться и маловероятные гипотезы захвата Землей готовой Луны и отделения Луны от Земли.

Заметное различие ср. плотности планет земного типа связано, по-видимому, со значит. различием общего содержания Fe и содержания металлич. Fe. Высокая плотность Меркурия (5,4 г/см 3) указывает на то, что он содержит до 60-70% металлич. никелистого железа, тогда как низкая плотность Луны (3,34 г/см 3) указывает на отсутствие в ней значит. количеств металлич. железа (менее 10-15%). Содержание богатого железом сплава в Земле составляет ок. 32%, в Венере - ок. 28%.

В 70-е гг. 20 в., одновременно с развитием представлений о последовательной конденсации различных веществ в остывающем протопланетном облаке, появилась гипотеза неоднородной (гетерогенной) аккумуляции планет, согласно к-рой полная аккумуляция нелетучих веществ в несколько крупных тел - ядер будущих планет - успевала произойти до заметного дальнейшего остывания облака и конденсации других, более летучих веществ. По этой гипотезе, формирующиеся планеты с самого начала оказываются слоистыми. В сочетании с предположением о конденсации сначала металлич. железа, а затем силикатов гипотеза гетерогенной аккумуляции объясняла возникновение железных ядер у Земли и Венеры. Однако она игнорировала надежные астрофизич. оценки скорости остывания облака: остывание должно происходить несравненно быстрее, чем аккумуляция продуктов конденсации. Выдвигалась также гипотеза, что ядра Земли и Венеры состоят в основном из силикатов и окислов, перешедших под действием давления вышележащих слоев в плотное металлич. состояние. В этом случае ядра Земли и Венеры содержали бы всего неск. % металлич. железа, т.е. приблизительно столько же, сколько ядро Луны, но меньше, чем ядро Марса (давление в недрах Марса и Луны заведомо слишком мало для перехода силикатов в металлич. состояние). Эксперименты по статич. сжатию вещества до давлений, близких к давлениям в ядрах Земли и Венеры, пока не позволяют сделать определенного вывода о возможности таких фазовых переходов с достаточно большим скачком плотности.

По-видимому, образование ядер у планет земной группы произошло вследствие отделения богатого железом расплава от ферромагнезиальных силикатов. Физикохимия процесса отделения железного расплава и динамика опускания его к центру планеты изучены пока недостаточно. В работах, посвященных анализу процесса расслоения первично однородных планет, наибольшее число расчетов проводится для Земли.

Начальное состояние и эволюция Земли

Земля росла из роя "промежуточных" тел, двигавшихся в широкой области между орбитами Венеры и Марса. Отличия в составе и плотности планетезималей были достаточно велики, на что указывает разность ср. плотностей этих планет. При падении тел на протоземлю они от удара разрушались, происходил нагрев вещества, сопровождавшийся дегазацией и дегидратацией. В результате перемешивания вещества при ударах хим. неоднородности частично сглаживались. Удары тел с размерами в десятки и более км приводили к накоплению существенной доли энергии на большой глубине, что являлось осн. источником нагрева планеты. Дополнит. разогрев происходил вследствие распада радиоактивных элементов и сжатия вещества под увеличивающимся давлением вышележащих (нарастающих) слоев. Согласно расчетам, центральная область Земли к концу ее образования была нагрета до 1000-1500 К, что меньше темп-ры плавления пород на этих глубинах. (В недрах планеты темп-ра плавления увеличивается с глубиной вследствие роста давления.) На глубинах 50-2000 км темп-ра превосходила темп-ру плавления железа, однако в целом ещё дифференцированное вещество вряд ли находилось в жидком состоянии. Поверхность же Земли вследствие быстрой теплоотдачи имела достаточно низкую темп-ру, уже тогда допускавшую существование первичных водных бассейнов. По-видимому, уже на заключит. этапах аккумуляции Земли началась крупномасштабная дифференциация вещества - отделение и уход в нижние горизонты тяжелых компонентов. Гравитац. энергия, выделявшаяся при расслоении Земли, в результате конвективных движений масс переносилась к поверхности Земли и содействовала ее обновлению, о чем говорит отсутствие на земной поверхности древнейших пород, с возрастами 3,8-4,5 млрд. лет. Не исключено, что разрушение первичной коры связано, как и у Луны, с поздней бомбардировкой падавшими телами. Наиболее легкие вещества всплывали ("выдавливались") на поверхность, постепенно слагая наружный слой земного шара - земную кору. Это был длит. процесс (неск. млрд. лет), к-рый в разных местах земного шара протекал по-разному, что привело к образованию участков с толстой корой (материков) и участков с тонкой корой (океанич. впадин). Земная кора отличается и по составу, и по плотности от подстилающего ее вещества мантии Земли. Плотность коры составляет 2,7-2,8 г/см 3 , а плотность верхней мантии (приведённая к нулевому давлению) ок. 3,3-3,5 г/см 3 . Скачок плотности на границе ядра превышает 4 г/см 3 . Плотность вещества ядра несколько меньше плотности Fe при этих давлениях, что указывает на присутствие в нем какой-то более легкой примеси.

Разогревание Земли сопровождалось выделением газов и водяных паров, содержащихся в небольшом количестве в земных каменистых веществах. Прорвавшись на поверхность, водяные пары сконденсировались в воды морей и океанов, а газы образовали атмосферу, состав к-рой первоначально существенно отличался от современного. Состав совр. земной атмосферы в значит. мере обусловлен существованием на Земле жизни (биосферы). Нек-рую роль в образовании гидросферы и атмосферы, возможно, сыграли падавшие на Землю ледяные ядра комет.

Процесс хим. расслоения земных недр происходит и сейчас. Легкие расплавы в виде магмы поднимаются из мантии в кору. Они частично застревают и застывают внутри земной коры, а частично прорывают кору и в виде лавы изливаются наружу при вулканич. извержениях. Перемещения вещества в недрах Земли проявляются в виде подъемов и опусканий больших участков поверхности, горизонтальных перемещений отдельных плит, на к-рые расчленена земная кора, в виде процессов вулканизма и горообразования, а также землетрясений.

Лит.:
Шмидт О.Ю., Четыре лекции о теории происхождения Земли, 3 изд., М., 1957; Левин Б.Ю., Происхождение Земли и планет, 4 изд., М., 1964; Сафронов В.С., Эволюция допланетного облака и образование Земли и планет, М., 1969; Вуд Дж., Метеориты и происхождение солнечной системы, пер. с англ., М., 1971; Рускол Е.Л., Происхождение Луны М., 1975; Альвен X., Аррениус Г. Эволюция солнечной системы, пер. с англ. М., 1979; Спутники планет, пер. с англ., М. 1980; Протозвезды и планеты, пер. с англ, ч. 1-2, М., 1982.

(Б.Ю. Левин, А.В. Витязев )