Введение

После изготовления практически все приборы учета тепловой энергии одинаковы. Однако, если брать приборы учета в процессе работы и эксплуатации, все они разные, в своей работе имеют мало общего, сходства в их работе очень мало. Показания прибор учета могут иметь погрешность, которая может привести к переплате за ресурсы тепловой энергии или наоборот. В том случае, если показания занижены, у теплоснабжающей организации могут возникнут вопросы к потребителям тепловой энергии. Вскрыться данный факт может при первой же проверке показаний. Вследствие этого, теплоснабжающая организация будет настаивать на внеочередной поверке приборов учета тепловой энергии, которую будет оплачивать теплоснабжающая организация. В том случае, если занижение показаний произошло по вине потребителей, теплоснабжающая организация будет добиваться того, чтобы все затраты связанные с проведением демонтажа, поверкой и монтажом прибора учета легли на потребителей. В большинстве случаев, дело рассматривается в суде. В этом случае, потребитель будет вынужден оплатить средства на судебные тяжбы, которые понесла теплоснабжающая организация.

В случае, если показания завышены, виновным будет признана теплоснабжающая организация, потребитель имеет право подать заявление в суд на возмещение сверхзаплаченных денег, а также неустойку и возмещение морального вреда. Отметим, что расходы на адвоката, которые понесет потребитель, он также имеет право взыскать с теплоснабжающей организации в судебном порядке. Договориться без судебных тяжб очень тяжело, но советуем вам все-таки попробовать это сделать, т.к. судебные тяжбы могут затянуться на месяцы и годы.

Наиболее частое нарушение, которое приводит к неправильному расчету показателей теплосчетчиком, является их неправильная установка. В настоящее время, на рынке много организаций, которые обещают Вам установку УУТЭ за минимальную цену. Прежде чем заказать установку узла учета тепловой энергии, проверьте лицензии и отзывы о них. В наше время, многие организации пытаются снизить затраты на специалистах, что в конечном итоге может привести не только к погрешностям в показаниях, но и поломке прибора, ремонт которого обойдется гораздо дороже, чем услуга квалифицированного специалиста. Не следует смотреть на цену выполнения работ, сэкономив на этом, вы можете заплатить намного больше за дальнейшие последствия.


Рис. 1.

Основные нарушения при установке приборов учёта тепловой энергии

1. В целях экономии подключение комплекта термопреобразователей с трёх- или четырёхпроводной схемой подключения выполняется по двухпроводной схеме. Были случаи, когда такой монтаж выполнялся телефонным проводом или проводом с сечением 0,22 мм 2 (рекомендовано не менее 0,35 мм 2), что приводило к ошибке при измерении температуры более 10 о С, при этом погрешность измерений теплосчётчика возрастает до 50%.

2. Если в гильзах для датчиков температуры отсутствует масло, это, в конченом итоге, приводит к ошибкам в расчете. Максимальная погрешность составляет 4 градуса. В денежном выражении, приблизительный убыток составляет 30 тысяч рублей. При расходе в 8 т/ч (а это расход теплоносителя, характерный для четырёх подъездной пятиэтажки), погрешность измерений тепловой энергии составляет 0,032 Гкал/ч или 0,768 Гкал в сутки. В денежном выражении - приблизительно 30 тыс. руб. в месяц.

3. В трубопроводе системы отопления с диаметром 32 или 40 мм установлены термопреобразователи - преобразователи температуры, длина которых значительно превышает диаметры трубопроводов. Если на трубопроводе малого диаметра такой термопреобразователь установлен без применения расширителей трубопровода, то его рабочая часть будет значительно выступать за пределы трубопровода, поэтому прибор не может достоверно измерять температуру теплоносителя. Следовательно, точность и погрешность измерений счётчика не соответствует заявленной производителем, и такой счётчик не может считаться коммерческим.

4. Для снижения объёма работ, при установке теплосчетчика, датчики температуры устанавливаются в грязевики. В результате, их рабочая поверхность располагается в вне системы движения потока энергии. Отсутствие изоляции также негативно сказывается на передаваемых показаниях. В результате, показания погрешность составляет 5-7 градусов. Если выразить данную погрешность в денежном эквиваленте, получается 108 тысяч рублей (девятиэтажный дом с четырьмя подъездами)

5. Иногда, вместо датчиков температуры, например КТПТР (КТСПН), которые прописаны в проекте, заменяют одиночными, например ТСП100. Отметим, что дополнительная погрешность может достигать 3%, что скажется на парвильности передаваемых данных.

6. Отсутствие повсеместно теплоизоляции верхней части преобразователей сопротивлений, особенно, если эти участки расположены на улице. Понятно, что в данном случае будет присутствовать дополнительная погрешность измерения температуры, и, как следствие, точность и погрешность измерения теплоэнергии.

7. Преобразователи расхода должны быть установлены в трубопроводе через паронитовые прокладки. Очень часто, при демонтаже преобразователя расхода для госповерки, мы извлекаем паронитовые прокладки с внутренним, прорубленным зубилом, треугольным или прямоугольным отверстием (рис. 2). О какой точности измерений можно говорить, если поток воды в расходомерах в данном случае непредсказуем?

Рис. 2. Расходомер, на котором была установлена квадратная прокладка.

8. Электромагнитные преобразователи расхода (в исполнении «сэндвич») должны монтироваться в систему с применением динамометрического ключа, с обязательной установкой дополнительных демпфирующих прокладок. Повсеместно на объектах наблюдаются нарушения этих рекомендаций, что приводит к изменению внутреннего диаметра фторопластовой футеровки расходомерного устройства, нарушению зазоров между футеровкой и электродами съёма информации о скорости потока теплоносителя и значительной погрешности измерения расхода теплоносителя (рис. 3).

Рис. 3. На расходомере были установлены не подлинная проставка, также не был установлен магнитно-сетчатый фильтр.

9. В целях экономии, при монтаже расходомерных устройств, вместо рекомендованных заводами-изготовителями фланцев с центрирующими углублениями, применяются стандартные фланцы. При этом первичные преобразователи расхода могут устанавливаться со смещением до 10 мм от оси трубопровода. Трудно установить при этом погрешность измерения расхода счётчиком тепла по данному трубопроводу.

10. Применение повсеместно вместо паронитовых прокладок - резиновых, толщиной 3-4 мм. Неравномерное сжатие резины приводит к несоосности (перекосу) расходомеров и повышению погрешности измерений теплосчётчика. Внутренний диаметр здесь также из-за сжатия резины выдержать невозможно. Это, кстати, одна из основных причин, почему приборы на стенде идут с нулевой погрешностью, а по месту погрешность измерений превышает установленную для теплосчётчика. Если погрешность измерения показывает утечку, соответственно, за неё переплачивает потребитель. Если наоборот, то перерасход подпитки тепловой сети фиксируется у теплоисточника. В таком случае показания не принимают к учёту, а сам теплосчётчик попросту бракуют.

11. При монтаже расходомеров наблюдаются случаи, когда кабели соединяются с ними таким образом, что водяной конденсат по кабелю затекает внутрь преобразователя расхода теплосчётчика, искажая сначала результат измерений, а затем приводя к выходу из строя первичный преобразователь расхода (рис. 4).

12. Имеются объекты, где для измерения расхода теплоносителя (особенно это касается горячей воды в системах с переменным расходом (установлены различные регуляторы поддержания температуры в системе отопления или ГВС)) устанавливаются счётчики, не соответствующие реальным нагрузкам. При низком расходе погрешность приборов расхода не позволяет применять его для целей коммерческого учёта тепловой энергии.

14. При проверке на ряде объектов часть приборов имеет просроченные сроки поверки, или приборы не исправны. О какой погрешности измерений можно говорить в данном случае - не знает никто.

Заключение

Точность расчета тепловой энергии напрямую зависит от сделанного монтажа и качества обслуживания. Поэтому очень важно, чтобы проектированием, обслуживанием и монтажом УУТЭ занимались профессионалы, которые имеют необходимую специализацию. Сотрудники организации должны иметь удостоверения по электробезопасности и охране труда. В пример предоставим рисунок 5, на котором показана разница между прибором учета, который обслуживала квалифицированная организация и нет.

Рис. 5. Разница между приборами, которые обслуживали правильно и нет.


При установке теплосчетчика и расходомеров горячей воды всегда возникает вопрос - насколько показания измеряемые приборами учета достоверны. Любые измерительные приборы имеют определенную погрешность измерений. Поэтому при измерении расхода воды показания измерительных приборов могут не соответствовать фактическому расходу воды. В соответствии с правилами учета тепловой энергии и теплоносителя относительная погрешность измерений не должна превышать +/-2% от эталонного значения. Эталонное значение расхода можно получить только при использовании эталонного средства измерений. Процедура сравнения показаний эталона и показаний проверяемого расходомера называется поверкой. Если водомер, расходомер прошел поверку, то считается, что фактический расход находится в диапазоне от 0,98X до 1,02X, где X – показание расходомера , водомера. Открывая кран и сливая воду, например 3 м3, по показаниям водомера, означает, что фактическое значение расхода может быть в диапазоне от 2,94 до 3,06 м3. К сожалению, если расходомер один, то его показания проверить можно только с использованием дополнительного образцового средства измерений, например контрольного водомера или мерной емкости (поверка методом сличения показаний) или взвешивания пролитой воды на контрольных весах (поверка весовым методом).

Несколько лучше обстоит ситуация в общедомовых системах учета тепловой энергии и горячей воды. Если система теплопотребления закрытая, т.е. отсутствует потребление воды из системы на нужды горячего водоснабжения, то должно выполняться равенство расходов М1=М2 при измерении расхода водомерами как показано на рис.1. Водомеры или расходомеры при учете тепловой энергии устанавливаются в паре на подающем и обратном трубопроводе. Тепловычислитель и датчики температуры для упрощения не показаны. Баланс расходов или равенство М1=М2, как правило, не выполняется по вышеуказанной причине – погрешности расходомеров . В данном случае допустимое расхождение показаний будет определяться следующим выражением
+/-((М1+М2)/2)*0,04>=(М1-М2) или +/-(М1+М2)*0,02>=(М1-М2).
Рассмотрим выражение подробнее. Левая часть выражения определяет допустимое значение не баланса (+/-4% или в долях 0,04, так как расходомера два, то погрешности водомеров суммируются) от среднего значения показаний водомеров (М1+М2)/2. В правой части вычисляется величина не баланса расходов . Рассмотрим пример. Фактический расход в системе составляет 100 м3. Водомер или расходомер на подающем трубопроводе показал измеренное значение М1=98 м3, а расходомер на обратном трубопроводе М2=102 м3. В данном случае оба водомера измеряют в пределах допустимой погрешности +/-2%. Проверим данное утверждение по приведенному выражению
+/-(98+102)0,02=+/-4>=(98-102)=-4.
Водомеры измеряют в пределах правил учета, что подтверждается выполнением равенства. Отрицательная разность измеренных расходов -4 м3 объясняется тем, что погрешность может быть как положительной, так и отрицательной. В первом случае водомер будет завышать показания, во втором занижать.

В рассмотренном примере установленный на подаче водомер занижает показания, а водомер установленный на обратном трубопроводе завышает, поэтому разность расходов отрицательная, и данный факт не является неисправностью приборов. Все в допустимых пределах. Крайне не благоприятная ситуация если оба расходомера завышают или занижают измеряемые значения. В этом случае определить погрешность возможно только при поверки приборов.

Рассмотрим открытую систему теплопотребления, в которой теплоноситель из системы используется на нужды горячего водоснабжения рис.2.

Так как система открытая то М3=Мгвс, где Мгвс – расход на горячее водоснабжение, то уравнение баланса будет выглядеть следующим образом М1=М2+Мгвс или М1=М2+М3. по аналогии получаем уравнение проверки соблюдения баланса в данной системе с учетом погрешностей водомеров, которое будет выглядеть следующим образом:
+/-((М1+М2+М3)/3)*0,06>=(М1-М2-М3)
или
+/-(М1+М2+М3)0,02>=(М1-М2-М3).

Схема представленная на рис.3 является открытой системой с циркуляцией горячей воды. Уравнение баланса для такой системы М1=М2+Мгвс, где Мгвс=М3-М4, следовательно М1=М2+М3-М4.

По аналогии получаем уравнение проверки баланса для данной системы:
+/-((М1+М2+М3+М4)/4)*0,08>=(М1-М2-М3+М4)
или
+/-((М1+М2+М3+М4)0,02>=(М1-М2-М3+М4).

Коммерческий узел учета - это комплекс оборудования, который предназначен для учета энергии, для отслеживания, корректировки и регистрации параметров теплоносителя, а также для учета расхода.

Следует отметить, что в состав комбинированного теплосчетчика входит преобразователь расхода, температуры и тепловычислитель, каждый из которых является самостоятельными средствами измерений. Для правильной работы комбинированного теплосчетчика, при настройке в вычислитель должны быть запрограммированы паспортные характеристики преобразователей.

Любому инженеру (специалисту), который занимается установкой/настройкой приборов учета, должно быть известно о настройке для правильной работы теплосчетчиков. Однако, основная проблема, которая была выявлена в описанных УУТЭ, явились именно ошибки в настройках. В них были введены характеристики преобразователей расхода, не соответствующие паспортным. Эта ошибка является следствием невнимательностью персонала, который занимался настройкой приборов учета, т.к. вычислитель не был программирован, коэффициенты в нём были "по умолчанию". Данная ошибка привела к значительному завышению или занижению показаний счетчиков. Особенность совместно применяемых тепловычислителей и расходомеров разных производителей также является причиной ошибок в работе приборов учета. Применяемые в данном случае тепловычислители допускают ввод веса импульса преобразователя (количество литров на один импульс), выражаемого числом не более чем с тремя знаками после запятой, а вес импульса расходомеров ряда модификаций выражается числом с четырьмя знаками после запятой. В тепловычислель подразумевает ввод округления до третьего знака может быть введено только округленное до третьего знака, что ведет к систематической ошибке измерений. Однако, это ошибка, в сравнении с неправильным вводом (или не вводом) весов импульсов.

Можно назвать мелочами и другие обнаруженные недочеты, но в совокупности они достаточно сильно влияют на правильность и достоверность учета. К примеру, в большинстве узлов на трубопроводах ДУ 50 и 80 по какой-то причине (которая, вероятней всего, называлась «наличие на складе») были смонтированы термопреобразователи с длиной погружной части 35 мм, причем смонтированы через достаточно высокую бобышку (рис. 1). В результате этого, чувствительный элемент термопреобразователя находился не в толще потока, а у самой стенки трубопровода. При этом ни трубопровод в месте монтажа, ни бобышка не были теплоизолированы. Гильзы не везде были заполнены маслом. В теории, это должно привести к занижению результатов измерения показателей температуры по сравнению с показаниями приборов, смонтированных по инструкции. Кроме того, в одних узлах были установлены термопреобразователи КТСП-Н , а в других - КТПТР . Они различаются между собой характеристикой W100 (отношение сопротивления термопреобразователей при 100 и 0 О С), однако при настройке вычислителей это учтено не было. В результате - дополнительная (помимо обусловленных описанными выше факторами) ошибка измерений температуры в тех узлах, где настройка характеристики W100 в вычислителе не соответствовала соответствующим данным термопреобразователей.

Рис. 1. Неправильный выбор длины термопреобразователя (для наглядности вынут из гильзы).

Еще один фактор: ни один из вычислителей, работающих с электромагнитными преобразователями расхода, не был оборудован модулем контроля сетевого электропитания. В результате при отключении электросети (случайном или сознательном) вычислитель, который запитан от «батарейки», продолжал работать, а преобразователи - нет. Отсутствие сигнала от расходомера может быть вызвано не только обрывом линии связи/ отключением питания, но и действительно «нулевым» расходом, и не является для вычислителя нештатной ситуацией. Вычислитель считает, что все нормально, но просто нет расхода. И если в дальнейшем не анализировать архивы (часовые и суточные), а просто смотреть накопленные показания (месячные), то никакого подвоха обнаружить нельзя: можно подумать, что объект просто «потреблял мало энергии».

Очень грубой ошибкой являлось то, что вычислители были запрограмированы по открытой схеме, однако, в описанном городе она закрытая. Сделано это было не по указанию ЭСО (в проекте было написано "закрытая"), а из-за ошибки персонала при настройке. А «открытая» формула в закрытой схеме только в теории автоматически сводится к «закрытой». То есть при равных расходах теплоносителя в прямом и обратном трубопроводах (M 1 =M 2) мы должны получить значение теплопотребления:

Q=M1(h1-h хв)-M2(h2-h хв)=M1(h1-h2),

Где h 1 , h 2 - удельная энтальпия воды в прямом и обратном трубопроводах;

H хв - удельная энтальпия воды ХВС.

На практике, даже при идеально работающих расходомерах, в подающем и обратном трубопроводах и полном отсутствии утечек из-за погрешностей измерений М 1 и М 2 не равны, и открытая формула приводит либо к завышению (при M 1 >M 2), либо к занижению (при M 1

В нашем случае данный фактор на нескольких узлах учета был еще и усугублен следующим обстоятельством. Где-то при подключении были перепутаны кабели расходомеров в подающих и обратных трубопроводах, а в паре узлов - кабели термопреобразователей. При этом функция контроля разности температур во всех тепловычислителях не была включена, поэтому даже при t 1

Рис. 2. Замысловатый монтаж расходомера без прямых участков.

В статье не рассмотрен еще ряд факторов, обнаруженных в описанных узлах и также влияющих на качество учета. Некоторые из этих нюансов отражены на фотографиях, иллюстрирующих данную статью (рис. 2-4).

Рис. 3. «Сверхплотный монтаж»: термопреобразователь не дает возможности полностью открыть затвор.

Рис. 4. Термопреобразователь: двухпроводное подключение вместо четырехпроводного

Заключение

Производители занимаются усовершенствованием своих приборов учета, недобросовестные потребители ищут все более изощренные способы фальсификации показаний для уменьшения платежей, а некоторые "специалисты"без злых намерений и злого умысла занимаются монтажом и настройкой проверенных, поверенных теплосчетчиов таким образом, что при снятии показаний результаты оазываются недостоверными. На нашш взгляд, это и является главной проблемой водоучета и учета тепловой энергии. Есть несколько причин возникновения данной апроблемы, перечислим их:

Приборы учета сложно устроены, их сложно настроить. Настройкой должен заниматься специально обученыый человек. При этом, проверить настройки на месте установки без сервисного оборудования очень сложно.

Зарубежные счетчики, которые настроены на заводе-изготовителе, наш рынок из-за ряда причин не приемлет;

Отрасль теплоснабжения не молода, однако уровень знаний об учете и приборах учета в среднем по отрасли крайне низок. В связи с этим неграмотный или недобросовестный монтажник может сдать узел учета неграмотному представителю ЭСО, при этом обе стороны будудт думать, что у данным узлом учета все в порядке, Вся правда выяснится при озникновении явной проблемы с теплосчетчиком;

В нашей стране нет системы гарантирующей квалификацию и обеспечивающей ответственность проектировщиков и монтажников. Лицензирование и членство в СРО, выполнению качественнх работ не гарантируют;

Исполнителя работ чаще всего выбирают из-за критерия низкой цены;

Срок выполнения работ, как правило, очень сжаты, деньги выделяются в последний момент перед тем, как они должны быть «освоены».

И вот типичная ситуация: выделены средства, «освоить» нужно быстро. Находят монтажную организацию, предложившую «лучшую цену». Эта организация, чтобы уложиться в скудный бюджет (определяемый этой «лучшей ценой»), нанимает временно работников без квалификации. Приборы и комплектующие берутся те, что есть в наличии (помним о «лучшей цене» и сжатых сроках), даже если для конкретных объектов они не совсем подходят. Все наспех монтируется, подключается и настраивается неквалифицированным персоналом. Узлы сдаются в эксплуатацию только лишь потому, что заказчик и ЭСО не умеют оценивать работоспособность приборов и (или) доверяют монтажной организации, имеющей сертификаты (лицензии, дипломы, членство в СРО). А если когда-то что-то «всплывает», то заставить монтажную организацию что-либо переделать невозможно, ибо акты подписаны и жаловаться некому.

Рис. 5. Лирическая зарисовка.

Напоследок о наболевшем. Еще раз напоминаем, что правильная настройка прибора учета - залог долгой службы прибора и корретных платежей за предоставленные услуги. Истории о взломах приборов учета и фальсификации показаний уходят на второй план. (рис. 5).

1. В целях экономии подключение комплекта термопреобразователей с трех или четырех проводной схемой подключения выполняется по двухпроводной схеме. Были случаи, когда такой монтаж выполнялся телефонным проводом, или проводом с сечением 0,22 мм 2 (рекомендовано не менее 0,35 мм 2) что приводило к ошибке при измерении температуры более 10 градусов, при этом погрешность измерений счетчика тепла возрастает до 50%.

Теплосчетчики с различными дефектами вызванными неверной установкой и эксплуатацией

2. Достаточно часто встречаются коммерческие узлы учета тепла с гильзами для термопреобразователей, в которых (в одной или в обеих) отсутствует масло, что приводит к ошибке при измерении температуры до 4 градусов. При расходе в 8т/час, а это расход теплоносителя характерный для четырех подъездной пятиэтажки, погрешность измерений тепловой энергии составляет 0,032 Гкал в час или 0,768 в сутки. В денежном выражении – приблизительно 30 т. руб. в месяц.

Наиболее часто встречающиеся нарушения, вносящие значительную погрешность измерений счетчика тепла.

на фото отчетливо видно что прокладка была квадратная и расходомер установлен с перекосом

3. Часто в трубопроводе системы отопления с диаметром 32 или 40 мм установлены термопреобразователи — преобразователи температуры, длина которых значительно превышает диаметры трубопроводов. Если на трубопроводах малого диаметра термопреобразователи — преобразователи температуры устанавливаются без применения расширителей трубопровода, рабочая часть термопреобразователя — преобразователя температуры значительно выступает за пределы трубопровода и не может достоверно измерять температуру теплоносителя. Следовательно, точность и погрешность измерений счетчика, не соответствует заявленной производителем, и такой счетчик не может считаться коммерческим.

4. Очень часто для уменьшения объемов работ при монтаже счетчика тепла термопреобразователи — преобразователи температуры устанавливаются в грязевики. Рабочая поверхность термопреобразователя в этом случая находиться вне зоны движения потока воды + отсутствие изоляции на грязевике способствует искажению показаний в измерении температуры на 5-7 градусов. В денежном отношении, опять же для четырех подъездной пятиэтажки, это уже порядка 60 т. рублей в месяц.

5. Установка вместо комплекта термопреобразователей температуры марки КТПТР (КТСПН) предусмотренных проектом одиночных преобразователей температуры – например ТСП100. Постоянная дополнительная погрешность измерения тепла счетчиком при этом может достигать 3%.

здесь скорее всего были применены не родные прокладки, и отсутствовал магнитно-сетчатый фильтр

6. Отсутствие повсеместно теплоизоляции верхней части преобразователей сопротивлений, особенно если эти участки расположены на улице. Понятно, что в данном случае будет присутствовать дополнительная погрешность измерения температуры, и как следствие точность +и погрешность измерения тепла .

7. Преобразователи расхода должны быть установлены в трубопроводе через паронитовые прокладки. Очень часто при демонтаже преобразователя расхода для госповерки мы извлекаем паронитовые прокладки с внутренним прорубленным зубилом треугольным или прямоугольным отверстием в виде треугольника или прямоугольника. Как в данном случае можно говорить о погрешности измерения расхода?

8. Электромагнитные преобразователи расхода ЭРСВ теплосчетчиков производства предприятия «Взлет» должны монтироваться в систему с применением динамометрического ключа, с обязательной установкой дополнительных демпфирующих прокладок. Повсеместно на объектах наблюдаются нарушения этих рекомендаций, что приводит к изменению внутреннего диаметра фторопластовой футеровки расходомерного устройства, нарушению зазоров между футеровкой и электродами съема информации о скорости потока теплоносителя и значительной погрешности измерения расхода теплоносителя .

9. В целях экономии, при монтаже расходомерных устройств, вместо рекомендованных заводами-изготовителями фланцев с центрирующими углублениями, применяются стандартные фланцы. При этом первичные преобразователи расхода могут устанавливаться со смещением до 10 мм от оси трубопровода. Трудно установить при этом погрешность измерения расхода счетчиком тепла по данному трубопроводу.

здесь был неверно заведен и не загерметизирован кабель питания

10. Применение повсеместно вместо паронитовых прокладок резиновых толщиной 3-4 мм. Неравномерное сжатие резины приводит к несоосности (перекосу) расходомеров и повышению погрешности измерений счетчика тепла. Внутренний диаметр здесь также из-за сжатия резины выдержать невозможно. Это кстати одно из основных причин, почему приборы на стенде идут с нулевой погрешностью, а по месту погрешность измерений превышает установленную для теплосчетчика. Если погрешность измерению показывает утечку, Вы соответственно за нее переплачиваете. Если наоборот, вроде бы как Вы подпитываете тепловую сеть показания не принимают к учету , теплосчетчик попросту бракуют.

11. При монтаже расходомеров наблюдаются случаи когда, кабели соединяются с ними таким образом, что водяной конденсат по кабелю затекает внутрь преобразователя расхода счетчика тепла, искажая сначала результат измерений, а затем приводя к выходу из строя первичного преобразователя расхода.

12. Имеются объекты, когда для измерения расхода теплоносителя и особенно горячей воды в системах с переменным расходом (различные регуляторы поддержания температуры в системе отопления или горячего водоснабжения ) устанавливаются счетчики, не соответствующие реальным нагрузкам. При низком расходе погрешность приборов расхода не позволяет применять его для целей коммерческого учета тепла.

Одни и теже приборы смонтированные и обслуживаемые разными организациями

13. Тоже относится к системам с повышенным расходом, без ограничивающих устройств. Когда разность между подающим и обратным трубопроводом менее 3 градусов . В этом случае погрешность измерения в определенных условиях может составлять до 50% по каналу измерения температуры, а ниже 2х процентов многие теплосчетчики – счетчики тепла вообще останавливают счет.

14. При проведении проверки узлов учета тепла выявляются узлы, данные об энергопотреблении с которых передаются поставщикам тепла. При детальном рассмотрении выясняется, что часть приборов имеет просроченные сроки поверки , к тому же узлы учета не исправны. О какой погрешности измерений можно говорить в данном случае.

Подводя итог, можно сказать, что учет тепла и теплоносителя только тогда достоверен и имеет точность и погрешность измерений , определенную паспортом узла, когда узел учета тепла и тепловой энергии спроектирован, смонтирован и обслуживается квалифицированным (обученным и аттестованным) персоналом в соответствии с правилами учета тепловой энергии и теплоносителя.

2015-16г. Парамонов Ю.О. ООО «Энергостром»

Недавно на форуме НПО «Тепловизор» был задан вопрос: «Теплосчетчик, как известно, имеет погрешность в измерениях расхода, температуры... Вопрос в вот в чем: скажем, за сутки через расходомер пришло 100 кубов теплоносителя, ушло 99 (по показаниям счетчика), погрешность измерения 1% (в пределах погрешности измерния 2%). В энергоснабжающей организации спрашивают, куда делся 1 куб, и как они будут считать расходы воды. Как с ними спорить, что это в пределах погрешности прибора, на что апеллировать? На какой нормативный документ сослаться?». Поскольку эта тема актуальна для многих потребителей, мы решили выложить небольшую статью.

Отвечая на Ваш вопрос, заранее вынуждены извиниться за дидактический характер ответа. Подобные вопросы находят ответ в основах теории измерений, являющейся таким же элементом технической культуры, да и культуры вообще, как например, основы философии, математики и физики.

Все измерительные процессы и средства не идеальны, т.е. при измерении с помощью них возникают ошибки – отклонения от истинного значения измеряемой величины – длины, объема, массы и пр. Более того, каждое измерение даже на одном и том же измерительном средстве зачастую дает разные результаты. Максимальная относительная величина возможных односторонних отклонений от истинного значения измеряемой величины является неотъемлемой и важнейшей характеристикой конкретного измерительного средства будь это линейка, весы, счетчик-расходомер и т.п. Эта характеристика называется погрешностью измерительного средства и выражается в процентах, или долях процента. Таким образом зона отклонений показаний измерительного средства от истинного значения, в силу симметрии этих отклонений, равна удвоенной погрешности средства измерения. Эта зона является зоной неопределенности значения измеряемой величины. То есть истинное значение измеряемой величины может быть любым находящимся в пределах этой зоны.

Измерения утечек или подмесов теплоносителя с помощью счетчиков-расходомеров, установленных на подающем и обратном трубопроводах, являются разностными или непрямыми измерениями, т.е. такими, где значение измеряемой величины определяется в процессе математической обработки результатов двух и более измерений.

Для разностных измерений, если не предусмотрены специальные мероприятия по взаимопривязке измерительных средств, среднестатистически зона неопределенности увеличивается в корень из двух раз. Относительная погрешность таких измерений гиперболически нарастает с уменьшением измеряемой разности. Так для приведенного Вами случая относительная погрешность измерения величины предполагаемой утечки в одну тонну (при вычислении объема следует иметь в виду, что вода в системе отопления при охлаждении ее с 90° С до 60° С уменьшает удельный объем на 1,9%) на уровне прошедших 100 тонн для счетчиков–расходомеров класса 1,0 превышает 100%, что противоречит требованиям пункта 5.2.4. «Правил учета тепловой энергии и теплоносителя», согласно которому «Водосчетчики должны обеспечивать измерение массы (объема) теплоносителя с относительной погрешностью не более 2%...». Следует отметить, что в приведенном Вами примере относительная погрешность измерения утечки в разностной схеме будет тогда удовлетворять требованиям «Правил учета…», когда уровень утечки будет превышать 71 тонну, поэтому «Правила учета…» предусматривают определение массы (объема) теплоносителя, израсходованного на подпитку и водоразбор, прямым измерением с помощью отдельно установленных водосчетчиков на трубопроводах подпитки и водоразбора ГВС. Таким образом, вопрос-гипотеза инспектора теплоснабжающей организации о суточной утечке в теплосистеме потребителя 1 тонны метрологически и юридически не обоснован.

Если величина расхождения показаний измерительных средств используемых в разностных измерениях меньше зоны неопределенности (Ваш пример), то отсутствует взаимооднозначное соответствие между измеряемой величиной и результом измерения, и возможен только вероятностно-логический анализ. То есть необходимы дополнительные эксперименты – измерения, позволяющие подтвердить или опровергнуть гипотезу о наличии утечек или подмесов. На практике, если нет возможности непосредственным осмотром системы теплоснабжения подтвердить отсутствие утечек, закрывают задвижку на прямом трубопроводе, фиксируя показания расходомеров и манометров на обоих трубопроводах. Далее закрывают задвижку на обратном трубопроводе, также фиксируя показания тех же приборов. На третьем этапе открывают задвижку на прямом трубопроводе, также фиксируя показания тех же приборов. После чего все задвижки возвращаются в исходное состояние (как до начала работ). Современные теплосчетчики и счетчики-расходомеры, устанавливаемые на узлах учета, если верить заявляемым на них характеристикам, имеют широкий диапазон измеряемых расходов, что и позволяет фиксировать расходы с относительной погрешностью не хуже 2% на уровне 1% от номинального. Учитывая, что задвижки зачастую полностью не перекрывают расход, в итоге мы будем иметь таблицу значений расходов и давлений по прямому и обратному трубопроводам для всех состояний задвижек.

№ п/п

Состояние задвижек

Показания

Расходомеров, т

Манометров, МПа

на трубопроводах

обратном

обратном

обратном

G 2 прямой

G 2 обратный

G 3 прямой

G 3 обратный

G 4 прямой

G 4 обратный

*Расходы определены из примера 100 тонн за 24 часа.

И положительное значение расхода связанного с утечкой определим из:

G 1 ут = G 4 прямой - G 2 прямой;

G 2 ут = G 4 обратный - G 2 обратный;

При этом рабочее значение утечки, в силу ее гидравлической близости либо к прямому, либо к обратному трубопроводу, будет находиться между значениями G 1 ут < G рабочее ут < G 2 ут.