Что такое логарифм?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно - уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 - 20 минут вы:

1. Поймете, что такое логарифм .

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень...

Чувствую, сомневаетесь вы... Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

1.1. Определение степени для целого показателя степени

X 1 = X
X 2 = X * X
X 3 = X * X * X

X N = X * X * … * X — N раз

1.2. Нулевая степень.

По определению принято считать, что нулевая степень любого числа равна 1:

1.3. Отрицательная степень.

X -N = 1/X N

1.4. Дробная степень, корень.

X 1/N = корень степени N из Х.

Например: X 1/2 = √X.

1.5. Формула сложения степеней.

X (N+M) = X N *X M

1.6.Формула вычитания степеней.

X (N-M) = X N /X M

1.7. Формула умножения степеней.

X N*M = (X N) M

1.8. Формула возведения дроби в степень.

(X/Y) N = X N /Y N

2. Число e.

Значение числа e равно следующему пределу:

E = lim(1+1/N), при N → ∞.

С точностью 17 знаков число e равно 2.71828182845904512.

3. Равенство Эйлера.

Это равенство связывает пять чисел, играющих особую роль в математике: 0, 1, число e, число пи, мнимую единицу.

E (i*пи) + 1 = 0

4. Экспоненциальная функция exp (x)

exp(x) = e x

5. Производная экспоненциальной функции

Экспоненциальная функция обладает замечательным свойством: производная функции равна самой экспоненциальной функции:

(exp(x))" = exp(x)

6. Логарифм.

6.1. Определение функции логарифм

Если x = b y , то логарифмом называется функция

Y = Log b (x).

Логарифм показывает в какую степень надо возвести число - основание логарифма (b), чтобы получить заданное число (X). Функция логарифм определена для X больше нуля.

Например: Log 10 (100) = 2.

6.2. Десятичный логарифм

Это логарифм по основанию 10:

Y = Log 10 (x) .

Обозначается Log(x): Log(x) = Log 10 (x).

Пример использования десятичного логарифма — децибел .

6.3. Децибел

Пункт выделен в отдельную страницу Децибел

6.4. Двоичный логарифм

Это логарифм по основанию 2:

Y = Log 2 (x).

Обозначается Lg(x): Lg(x) = Log 2 (X)

6.5. Натуральный логарифм

Это логарифм по основанию e:

Y = Log e (x) .

Обозначается Ln(x): Ln(x) = Log e (X)
Натуральный логарифм — обратная функция к экспоненциальной функции exp (X).

6.6. Характерные точки

Log a (1) = 0
Log a (a) = 1

6.7. Формула логарифма произведения

Log a (x*y) = Log a (x)+Log a (y)

6.8. Формула логарифма частного

Log a (x/y) = Log a (x)-Log a (y)

6.9. Формула логарифма степени

Log a (x y) = y*Log a (x)

6.10. Формула преобразования к логарифму с другим основанием

Log b (x) = (Log a (x))/Log a (b)

Пример:

Log 2 (8) = Log 10 (8)/Log 10 (2) =
0.903089986991943552 / 0.301029995663981184 = 3

7. Формулы полезные в жизни

Часто возникают задачи пересчета объема в площадь или в длину и обратная задача -- пересчет площади в объем. Например, доски продаются кубами (кубометрами), а нам требуется рассчитать какую площадь стены можно обшить досками содержащимися в определенном объеме, см. расчет досок, сколько досок в кубе . Или, известны размеры стены, надо рассчитать число кирпичей, см. расчет кирпича .


Разрешается использовать материалы сайта при условии установки активной ссылки на источник.

График функции натурального логарифма. Функция медленно приближается к положительной бесконечности при увеличении x и быстро приближается к отрицательной бесконечности, когда x стремится к 0 («медленно» и «быстро» по сравнению с любой степенной функцией от x ).

Натуральный логарифм - это логарифм по основанию , где e {\displaystyle e} - иррациональная константа, равная приблизительно 2,72. Он обозначается как ln ⁡ x {\displaystyle \ln x} , log e ⁡ x {\displaystyle \log _{e}x} или иногда просто log ⁡ x {\displaystyle \log x} , если основание e {\displaystyle e} подразумевается . Другими словами, натуральный логарифм числа x - это показатель степени , в которую нужно возвести число e , чтобы получить x . Это определение можно расширить и на комплексные числа .

ln ⁡ e = 1 {\displaystyle \ln e=1} , потому что e 1 = e {\displaystyle e^{1}=e} ; ln ⁡ 1 = 0 {\displaystyle \ln 1=0} , потому что e 0 = 1 {\displaystyle e^{0}=1} .

Натуральный логарифм может быть также определён геометрически для любого положительного вещественного числа a как площадь под кривой y = 1 x {\displaystyle y={\frac {1}{x}}} на промежутке [ 1 ; a ] {\displaystyle } . Простота этого определения, которое согласуется со многими другими формулами, в которых применяется данный логарифм, объясняет происхождение названия «натуральный».

Если рассматривать натуральный логарифм как вещественную функцию действительной переменной, то она является обратной функцией к экспоненциальной функции , что приводит к тождествам:

e ln ⁡ a = a (a > 0) ; {\displaystyle e^{\ln a}=a\quad (a>0);} ln ⁡ e a = a (a > 0) . {\displaystyle \ln e^{a}=a\quad (a>0).}

Подобно всем логарифмам, натуральный логарифм отображает умножение в сложение:

ln ⁡ x y = ln ⁡ x + ln ⁡ y . {\displaystyle \ln xy=\ln x+\ln y.}

Натуральный логарифм

График функции натурального логарифма. Функция медленно приближается к положительной бесконечности при увеличении x и быстро приближается к отрицательной бесконечности, когда x стремится к 0 («медленно» и «быстро» по сравнению с любой степенной функцией от x ).

Натуральный логарифм - это логарифм по основанию , где e - иррациональная константа, равная приблизительно 2,718281 828 . Натуральный логарифм обычно обозначают как ln(x ), log e (x ) или иногда просто log(x ), если основание e подразумевается.

Натуральный логарифм числа x (записывается как ln(x) ) - это показатель степени , в которую нужно возвести число e , чтобы получить x . Например, ln(7,389...) равен 2, потому что e 2 =7,389... . Натуральный логарифм самого числа e (ln(e) ) равен 1, потому что e 1 = e , а натуральный логарифм 1 (ln(1) ) равен 0, поскольку e 0 = 1.

Натуральный логарифм может быть определён для любого положительного вещественного числа a как площадь под кривой y = 1/x от 1 до a . Простота этого определения, которое согласуется со многими другими формулами, в которых применяется натуральный логарифм, привела к появлению названия «натуральный». Это определение можно расширить на комплексные числа , о чём будет сказано ниже.

Если рассматривать натуральный логарифм как вещественную функцию действительной переменной, то она является обратной функцией к экспоненциальной функции, что приводит к тождествам:

Подобно всем логарифмам, натуральный логарифм отображает умножение в сложение:

Таким образом, логарифмическая функция представляет собой изоморфизм группы положительных действительных чисел относительно умножения на группу вещественных чисел по сложению, который можно представить в виде функции :

Логарифм может быть определён для любого положительного основания, отличного от 1, а не только для e , но логарифмы для других оснований отличаются от натурального логарифма только постоянным множителем, и, как правило, определяются в терминах натурального логарифма. Логарифмы полезны для решения уравнений, в которых неизвестные присутствуют в качестве показателя степени. Например, логарифмы используются для нахождения постоянной распада для известного периода полураспада, или для нахождения времени распада в решении проблем радиоактивности . Они играют важную роль во многих областях математики и прикладных наук, применяются в сфере финансов для решения многих задач, включая нахождение сложных процентов.

История

Первое упоминание натурального логарифма сделал Николас Меркатор в работе Logarithmotechnia , опубликованной в 1668 году , хотя учитель математики Джон Спайделл ещё в 1619 году составил таблицу натуральных логарифмов. Ранее его называли гиперболическим логарифмом, поскольку он соответствует площади под гиперболой. Иногда его называют логарифмом Непера, хотя первоначальный смысл этого термина был несколько другой.

Конвенции об обозначениях

Натуральный логарифм принято обозначать через «ln(x )», логарифм по основанию 10 - через «lg(x )», а прочие основания принято указывать явно при символе «log».

Во многих работах по дискретной математике, кибернетике, информатике авторы используют обозначение «log(x )» для логарифмов по основанию 2, но это соглашение не является общепринятым и требует разъяснения либо в списке использованных обозначений, либо (при отсутствии такого списка) сноской или комментарием при первом использовании.

Скобки вокруг аргумента логарифмов (если это не приводит к ошибочному чтению формулы) обычно опускают, а при возведении логарифма в степень показатель приписывают непосредственно к знаку логарифма: ln 2 ln 3 4x 5 = [ ln( 3 )] 2 .

Англо-американская система

Математики, статистики и часть инженеров обычно используют для обозначения натурального логарифма либо «log(x )», либо «ln(x )» , а для обозначения логарифма по основанию 10 - «log 10 (x )».

Некоторые инженеры, биологи и другие специалисты всегда пишут «ln(x )» (или изредка «log e (x )»), когда они имеют в виду натуральный логарифм, а запись «log(x )» у них означает log 10 (x ).

log e является «натуральным» логарифмом, поскольку он возникает автоматически и появляется в математике очень часто. Например, рассмотрим проблему производной логарифмической функции:

Если основание b равно e , то производная равна просто 1/x , а при x = 1 эта производная равна 1. Другим обоснованием, по которому основание e логарифма является наиболее натуральным, является то, что он может быть довольно просто определён в терминах простого интеграла или ряда Тейлора , чего нельзя сказать о других логарифмах.

Дальнейшие обоснования натуральности не связаны со счислением. Так, например, есть несколько простых рядов с натуральными логарифмами. Пьетро Менголи и Николай Меркатор называли их логарифмус натуралис несколько десятилетий до тех пор, пока Ньютон и Лейбниц не разработали дифференциальное и интегральное исчисление.

Определение

Формально ln(a ) может быть определён как площадь под кривой графика 1/x от 1 до a , т. е. как интеграл :

Это действительно логарифм, поскольку он удовлетворяет фундаментальному свойству логарифма:

Это можно продемонстрировать, допуская следующим образом:

Численное значение

Для расчета численного значения натурального логарифма числа можно использовать разложение его в ряд Тейлора в виде:

Чтобы получить лучшую скорость сходимости, можно воспользоваться следующим тождеством:

при условии, что y = (x −1)/(x +1) и x > 0.

Для ln(x ), где x > 1, чем ближе значение x к 1, тем быстрее скорость сходимости. Тождества, связанные с логарифмом, можно использовать для достижения цели:

Эти методы применялись ещё до появления калькуляторов, для чего использовались числовые таблицы и выполнялись манипуляции, аналогичные вышеописанным.

Высокая точность

Для вычисления натурального логарифма с большим количеством цифр точности ряд Тейлора не является эффективным, поскольку его сходимость медленная. Альтернативой является использование метода Ньютона , чтобы инвертировать в экспоненциальную функцию, ряд которой сходится быстрее.

Альтернативой для очень высокой точности расчёта является формула:

где M обозначает арифметико-геометрическое среднее 1 и 4/s, и

m выбрано так, что p знаков точности достигается. (В большинстве случаев значение 8 для m вполне достаточно.) В самом деле, если используется этот метод, может быть применена инверсия Ньютона натурального логарифма для эффективного вычисления экспоненциальной функции. (Константы ln 2 и пи могут быть предварительно вычислены до желаемой точности, используя любой из известных быстро сходящихся рядов.)

Вычислительная сложность

Вычислительная сложность натуральных логарифмов (с помощью арифметико-геометрического среднего) равна O(M (n ) ln n ). Здесь n - число цифр точности, для которой натуральный логарифм должен быть оценен, а M (n ) - вычислительная сложность умножения двух n -значных чисел.

Непрерывные дроби

Хотя для представления логарифма отсутствуют простые непрерывные дроби , но можно использовать несколько обобщённых непрерывных дробей, в том числе:

Комплексные логарифмы

Экспоненциальная функция может быть расширена до функции, которая даёт комплексное число вида e x для любого произвольного комплексного числа x , при этом используется бесконечный ряд с комплексным x . Эта показательная функция может быть инвертирована с образованием комплексного логарифма, который будет обладать большей частью свойств обычных логарифмов. Есть, однако, две трудности: не существует x , для которого e x = 0, и оказывается, что e 2πi = 1 = e 0 . Поскольку свойство мультипликативности действительно для комплексной экспоненциальной функции, то e z = e z +2nπi для всех комплексных z и целых n .

Логарифм не может быть определён на всей комплексной плоскости , и даже при этом он является многозначным - любой комплексный логарифм может быть заменён на «эквивалентный» логарифм, добавив любое целое число, кратное 2πi . Комплексный логарифм может быть однозначным только на срезе комплексной плоскости. Например, ln i = 1/2 πi или 5/2 πi или −3/2 πi , и т.д., и хотя i 4 = 1, 4 log i может быть определена как 2πi , или 10πi или −6 πi , и так далее.

См. также

Примечания

  1. Mathematics for physical chemistry . - 3rd. - Academic Press, 2005. - P. 9. - ISBN 0-125-08347-5 , Extract of page 9
  2. J J O"Connor and E F Robertson The number e . The MacTutor History of Mathematics archive (сентябрь 2001). Архивировано
  3. Cajori Florian A History of Mathematics, 5th ed . - AMS Bookstore, 1991. - P. 152. - ISBN 0821821024
  4. Flashman, Martin Estimating Integrals using Polynomials . Архивировано из первоисточника 12 февраля 2012.