поистине удивительны. Само это соединение не имеет аналогов, ведь вода – это оксид водорода.

Вода никогда не бывает абсолютно чистой – в ней обязательно содержатся примеси других химических веществ. Чаще всего, это металлы или их соединения. Поэтому мы привыкли полагать, что вода хорошо проводит электрический ток. На самом же деле электропроводность воды напрямую зависит от ее чистоты. Абсолютно чистую воду можно получить в лаборатории. Этот процесс называется дистилляцией. Дистиллированная вода не имеет ни вкуса, ни запаха, и совсем не проводит ток.

Физико-химические свойства воды не только интересны, но еще и очень важны для обеспечения нормальной жизнедеятельности всего живого на Земле. Мы неоднократно слышали фразу: вода – колыбель жизни. Между тем, она является не только колыбелью, но и природным терморегулятором. Обладая поразительно высокой теплоемкостью (4,1868 кДж/кг), вода медленно остывает и медленно нагревается. Поэтому переходы от зимы к лету, от ночи ко дню для всего живого проходят мягче. На этом удивительные свойства воды в природе не заканчиваются. Вместо того чтобы терять плотность при переходе из твердого состояния в жидкое, вода наоборот ее набирает. Наибольшую плотность вода имеет при температуре от 0 до 4 градусов по Цельсию. Как известно, при нуле вода замерзает. Но, возможно, вы не слышали, что вода имеет самое высокое поверхностное натяжение. По этому показателю она уступает лишь ртути. Так вот, представьте себе: если бы вы падали плашмя с высоты 10 метров, то лучше, если бы под вами был лед, а не только что растаявшая вода.

Химические свойства воды обусловлены ее составом. Вода на 88,81% состоит из кислорода, и только на 11,19% – из водорода. Как мы упоминали выше, вода замерзает при нуле градусов Цельсия, а вот закипает – при ста. Дистиллированная вода имеет очень низкую концентрацию положительно заряженных ионов гидроксония НО и Н3О+ (всего 0,1 мкмоль/л), поэтому ее можно назвать отличным изолятором. Однако свойства воды в природе не были бы реализованы правильно, если бы она не была хорошим растворителем. Молекула воды очень мала по размеру. Когда в воду попадает другое вещество, его положительные ионы притягиваются атомами кислорода, составляющими молекулу воды, а отрицательные – атомами водорода. Вода как бы окружает со всех сторон растворенные в ней химические элементы. Поэтому, в воде почти всегда содержатся различные вещества, в частности, соли металлов, обеспечивающие проведение электрического тока.

Физические свойства воды «подарили» нам такие явления, как парниковый эффект и микроволновая печь. Около 60% парникового эффекта создает водяной пар, который отлично поглощает инфракрасные лучи. При этом показатель оптического преломления воды n=1,33. Кроме того, вода поглощает и микроволны, благодаря высокому дипольному моменту ее молекул. Эти свойства воды в природе и натолкнули ученых на мысли об изобретении микроволновой печи.

Если Вы не сильны в физике или химии, но у Вас есть большое желание разобраться в этих нелегких науках, то всегда есть возможность нанять репетитора. Ведь в наш век информационных технологий сделать это можно не вставая со стула, так как репетиторы теперь доступны и в сети интернет. Надо просто зайти на нужный сайт и выбрать себе подходящего преподавателя.

Вода – одно из самых удивительных соединений на Земле – давно уже поражает исследователей необычностью многих своих физических свойств:

1) Неисчерпаемость как вещества и природного ресурса; если все другие ресурсы земли уничтожаемы или рассеиваемы, то вода как бы ускользает от этого, принимая различные формы или состояния: кроме жидкой – твердую и газообразную. Это единственное вещество и ресурс такого типа. Это свойство обеспечивает вездесущность воды, она пронизывает всю географическую оболочку Земли и производит в ней разнообразную работу.

2) Присущее только ей расширение при затвердевании (замерзании) и уменьшение объема при плавлении (переходе в жидкое состояние).

3) Максимальная плотность при температуре +4 °С и связанные с этим весьма важные свойства для природных и биологических процессов, например исключение глубокого промерзания водоемов. Как правило, максимальная плотность физических тел наблюдается при температуре затвердевания. Максимальная плотность дистиллированной воды наблюдается в аномальных условиях – при температуре 3,98-4 °С (или округленно +4 °С), т. е. при температуре выше точки затвердевания (замерзания). При отклонении температуры воды от 4 °С в обе стороны плотность воды убывает.

4) При плавлении (таянии) лед плавает на поверхности воды (в отличие от других жидкостей).

5) Аномальное изменение плотности воды влечет за собой такое же аномальное изменение объема воды при нагревании: с возрастанием температуры от 0 до 4 °С объем нагреваемой воды уменьшается и только при дальнейшем возрастании начинает увеличиваться. Если бы при понижении температуры и при переходе из жидкого состояния в твердое плотность и объем воды изменялись так же, как это происходит у подавляющего большинства веществ, то при приближении зимы поверхностные слои природных вод охлаждались бы до 0 °С и опускались на дно, освобождая место более теплым слоям, и так продолжалось бы до тех пор, пока вся масса водоема не приобрела бы температуру 0 °С. Далее вода начинала бы замерзать, образующиеся льдины погружались бы на дно, и водоем промерзал бы на всю его глубину. При этом многие формы жизни в воде были бы невозможны. Но так как наибольшей плотности вода достигает при 4 °С, то перемещение ее слоев, вызываемое охлаждением, заканчивается при достижении этой температуры. При дальнейшем понижении температуры охлажденный слой, обладающий меньшей плотностью, остается на поверхности, замерзает и тем самым защищает лежащие ниже слои от дальнейшего охлаждения и замерзания.

6) Переход воды из одного состояния в другое сопровождается затратами (испарение, таяние) или выделением (конденсация, замерзание) соответствующего количества тепла. На таяние 1 г льда необходимо затратить 677 кал, на испарение 1 г воды – на 80 кал меньше. Высокая скрытая теплота плавления льда обеспечивает медленное таяние снега и льда.


7) Способность относительно легко переходить в газообразное состояние (испаряться) не только при положительных, но и при отрицательных температурах. В последнем случае испарение происходит минуя жидкую фазу – из твердой (льда, снега) сразу в парообразную. Такое явление носит название – сублимация.

8) Если сравнить температуру кипения и замерзания гидридов, образованных элементами шестой группы таблицы Менделеева (селена H 2 Se, теллура Н 2 Те) и воды (Н 2 О), то по аналогии с ними температура кипения воды должна быть порядка 60 °С, а температура замерзания – ниже 100° С. Но и здесь проявляются аномальные свойства воды – при нормальном давлении в 1 атм. вода кипит при +100 °С, а замерзает при 0 °С.

9) Громадное значение в жизни природы имеет и тот факт, что вода обладает аномально высокой теплоемкостью, в 3000 раз большей, чем воздух. Это значит, что при охлаждении 1 м 3 воды на 1 0 С на столько же нагревается 3000 м 3 воздуха. Поэтому, аккумулируя тепло, Океан оказывает смягчающее влияние на климат прибрежных территорий.

10) Вода поглощает тепло при испарении и таянии, выделяя его при конденсации из пара и замерзании.

11) Способность воды в дисперсных средах, например в мелкопористых почвах или биологических структурах, переходить в связанное или рассредоточенное состояние. В этих случаях очень сильно меняются свойства воды (ее подвижность, плотность, температура замерзания, поверхностное натяжение и другие параметры), крайне важные для протекания процессов в природных и биологических системах.

12) Вода – универсальный растворитель, поэтому не только в природе, но и в лабораторных условиях идеально чистой воды нет уже по той причине, что она способна к растворению любого сосуда, в который заключена. Есть предположение, что поверхностное натяжение идеально чистой воды было бы таковым, что по ней можно было бы кататься на коньках. Способность воды к растворению обеспечивает перенос веществ в географической оболочке, лежит в основе обмена веществами между организмами и средой, в основе питания.

13) Из всех жидкостей (кроме ртути) у воды самое высокое поверхностное давление и поверхностное натяжение: = 75·10 -7 Дж/см 2 (глицерин – 65, аммиак – 42, а все остальные – ниже 30 ·10 -7 Дж/см 2). В силу этого капля воды стремится принять форму шара, а при соприкосновении с твердыми телами смачивает поверхность большинства из них. Именно поэтому она может подниматься вверх по капиллярам горных пород и растений, обеспечивая почвообразование и питание растений.

14) Вода обладает высокой термической устойчивостью. Водяной пар начинает разлагаться на водород и кислород только при температуре выше 1000 °С.

15) Химически чистая вода является очень плохим проводником электричества. Вследствие малой сжимаемости в воде хорошо распространяются звуковые и ультразвуковые волны.

16) Свойства воды сильно изменяются под влиянием давления и температуры. Так, при росте давления температура кипения воды повышается, а температура замерзания, наоборот, понижается. С повышением температуры уменьшаются поверхностное натяжение, плотность и вязкость воды и возрастают электропроводность и скорость звука в воде.

Аномальные свойства воды вместе взятые, свидетельствующие о чрезвычайно высокой ее устойчивости к воздействию внешних факторов, вызваны наличием дополнительных сил между молекулами, получивших название водородных связей. Суть водородной связи сводится к тому, что ион водорода, связанный с каким-то ионом другого элемента, способен электростатически притягивать к себе ион того же элемента из другой молекулы. Молекула воды имеет угловое строение: входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находится два протона, а в вершине – ядро атома кислорода (рисунок 2.2).

Рисунок 2.2 – Строение молекулы воды

Из имеющихся в молекуле 10 электронов (5 пар) одна пара (внутренние электроны) расположена вблизи ядра кислорода, а из остальных 4 пар электронов (внешних) по одной паре обобществлено между каждым из протонов и ядром кислорода, тогда как 2 пары остаются неопределенными и направлены к противоположным от протонов вершинам тетраэдра. Таким образом, в молекуле воды имеется 4 полюса зарядов, расположенных в вершинах тетраэдра: 2 отрицательных, созданных избытком электронной плотности в местах расположения неподеленных пар электронов, и 2 положительных, созданных ее недостатком в местах расположения протонов.

Вследствие этого молекула воды оказывается электрическим диполем. При этом положительный полюс одной молекулы воды притягивает отрицательный полюс другой молекулы воды. В результате получаются агрегаты (или ассоциации молекул) из двух, трех и более молекул (рисунок 2.3).

Рисунок 2.3 – Образование диполями воды ассоциированных молекул:

1 – моногидроль Н 2 О; 2 – дигидроль (Н 2 О) 2 ; 3 – тригидроль (Н 2 О) 3

Следовательно, в воде одновременно присутствуют одиночные, двойные и тройные молекулы. Содержание их меняется в зависимости от температуры. Во льду содержатся, в основном, тригидроли, объем которых больше моногидролей и дигидролей . При повышении температуры скорость движения молекул возрастает, силы притяжения между молекулами ослабевают, и в жидком состоянии вода – это смесь три-, ди- и моногидролей. С дальнейшим увеличением температуры тригидрольные и дигидрольные молекулы распадаются, при температуре 100 °С вода состоит из моногидролей (пар).

Существование неподеленных электронных пар определяет возможность образования двух водородных связей. Еще две связи возникают за счет двух водородных атомов. Вследствие этого каждая молекула воды в состоянии образовать четыре водородные связи (рисунок 2.4).

Рисунок 2.4 – Водородные связи в молекулах воды:

– обозначение водородной связи

Благодаря наличию в воде водородных связей в расположении ее молекул отмечается высокая степень упорядоченности, что сближает ее с твердым телом, а в структуре возникают многочисленные пустоты, делающие ее очень рыхлой. К наименее плотным структурам принадлежит структура льда. В ней существуют пустоты, размеры которых несколько превышают размеры молекулы Н 2 О. При плавлении льда его структура разрушается. Но и в жидкой воде сохраняются водородные связи между молекулами: возникают ассоциаты – зародыши кристаллических образований. В этом смысле вода находится как бы в промежуточном положении между кристаллическим и жидким состояниями и более сходна с твердым телом, чем с идеальной жидкостью. Однако в отличие от льда каждый ассоциат существует очень короткое время: постоянно происходит разрушение одних и образование других агрегатов. В пустотах таких «ледяных» агрегатов могут размещаться одинокие молекулы воды, при этом упаковка молекул воды становятся более плотной. Именно поэтому при плавлении льда объем, занимаемый водой, уменьшается, ее плотность возрастает. При + 4 °С вода имеет самую плотную упаковку.

При нагревании воды часть теплоты затрачивается на разрыв водородных связей. Этим объясняется высокая теплоемкость воды. Водородные связи между молекулами воды полностью разрушаются при переходе воды в пар.

Сложность структуры воды обусловлена не только свойствами ее молекулы, но и тем, что вследствие существования изотопов кислорода и водорода в воде имеются молекулы с различным молекулярным весом (от 18 до 22). Наиболее распространенной является «обычная» молекула с молекулярным весом 18. Содержание молекул с большим молекулярным весом невелико. Так, «тяжелая вода» (молекулярный вес 20) составляет менее 0,02% всех запасов воды. В атмосфере она не обнаружена, в тонне речной воды ее не более 150 г, морской –160-170 г. Однако, ее присутствие придает «обычной» воде большую плотность, влияет на другие ее свойства.

Удивительные свойства воды позволили возникнуть и развиться жизни на Земле. Благодаря им вода может играть незаменимую роль во всех процессах, совершающихся в географической оболочке.

Вещество, которое имеет молекулярное строение является водой. Молекулы воды имеют между собой прочную связь, не зависимо от того в твердом или жидком состоянии она находится. Благодаря этому вода и обладает довольно большим количеством физических свойств. Давайте рассмотрим какими удивительными физическими свойствами обладает вода.

В условиях комнатной температуры вода находится в жидком состоянии без запаха и прозрачного цвета. Вода не имеет цвета в тонком слое, но если толщина водяного слоя составляет несколько метров, она приобретает голубой оттенок. Чистая вода обладает плохой проводимостью тока. Поэтому по проходимости тока можно определять чистоту воды - чем нижу будет уровень электропроводности, тем чище будет вода. Большинство веществ, которые находятся в твердом состоянии наблюдается более высокая плотность, чем в жидком состоянии. Но в отличии от всех этих веществ, вода, которая находится в твердом состоянии (лед) обладает более низкой плотностью, чем в жидком состоянии.

Вода медленно нагревается благодаря высокой теплоемкости, но тем не менее процесс остывания происходит намного медленнее. Это дает возможность в летнее время года накапливать тепло океанам и морям, а высвобождение тепла происходит в зимний период, именно поэтому нет резкого перепада температуры воздуха на территории нашей планеты на протяжении всего года. Океаны и моря - это оригинальный и природный аккумулятор тепла на территории нашей планеты.

Основными физическими свойствами воды являются - запах, цвет, прозрачность, вкус, плотность, температура, вязкость, сжимаемость, электропроводность, а также радиоактивность.

Цвет подземных вод будет напрямую зависеть от ее химического состава, а также от механических примесей, которые находятся в воде. Чаще всего подземные воды не имеют цвета. Воды болотного происхождения обладают желтоватым оттенком, а также в их состав входят гуминовые вещества. Изумрудный оттенок присутствует в сероводородных водах. Оценку цвета воды необходимо проводить с помощью стандартной платино-кобальтовой шкале в градусах.

В подземных водах, в большинстве случаев, отсутствует запах . Если в воде присутствует запах, это говорит о том, что в воде присутствует наличие газов биохимического происхождения, а также может являться признаком того, что в воде находятся гниющие органические вещества. Характер запаха определяется описательно - сероводородный, без запаха, гнилостный, болотный, плесневелый и др. По шкале в балах происходит оценка интенсивности запахов.

От состава растворенных в воде веществ будет зависеть ее вкус . Из-за присутствия в воде хлористого натрия преобладает соленый вкус, из-за сульфата магния - горький, а благодаря солям железа - ржавый вкус. Воды, в которых находится большое количество органических веществ имеют сладковатый вкус, а освежающий вкус получается благодаря наличию свободной углекислоты. По специальной таблице в баллах происходит оценка вкуса воды.

От количества растворенных в воде минеральных веществ, коллоидов, органических веществ, а также содержания механических примесей будет зависеть ее прозрачность . Для определения степени прозрачности подземных вод используется следующая номенклатура - слабопалесцирующая, прозрачная, слегка мутная, опалесцирующая, сильно мутная, мутная. Чаще всего подземные воды бывают прозрачными. По стандартной шкале в мг/л происходит оценка мутности воды.

В зависимости от геотермических особенностей района происходит изменение температуры воды . Она является отражателем тектонических, возрастных, гидродинамических, а также литологических особенностей водовмещающих толщ. Температура воды оказывает непосредственное влияние на вязкость, коэффициент фильтрации, а также на химический состав.

Подземные воды, которые находятся в естественных условиях могут переохлаждаться, быть холодными, термальными, а также перегретыми.

Отношением массы к объему определяется плотность воды при определенной температуре. Единицей плотности воды является плотность дистиллированной воды, температура которой составляет четыре градуса. От температуры, газов, растворенных в ней солей, а также от взвешенных частиц зависит плотность воды.

Практически нет сжимаемости воды , и определяется с помощью коэффициента сжимаемости. Благодаря внутреннему сопротивлению частиц жидкости к ее движение происходит определение вязкости воды, она выражается кинематической вязкостью и коэффициентами динамической вязкости.

От количества растворенных в воде солей будет зависеть электропроводность подземных вод. Незначительная электропроводность наблюдается в пресных водах. Изолятором является дистиллированная вода. Благодаря удельному электрическому сопротивление происходит оценка электропроводности воды.

По количеству содержания в воде радона определяется радиоактивность воды . Довольно редко встречаются радиоактивные подземные воды.

Вода́ (оксид водорода) - прозрачная жидкость, не имеющая цвета (в малом объёме), запаха и вкуса. Химическая формула: Н2O. В твёрдом состоянии называется льдом или снегом, а в газообразном - водяным паром. Около 71 % поверхности Земли покрыто водой (океаны, моря, озёра, реки, лёд на полюсах).

Является хорошим сильнополярным растворителем. В природных условиях всегда содержит растворённые вещества (соли, газы). Вода имеет ключевое значение в создании и поддержании жизни на Земле, в химическом строении живых организмов, в формировании климата и погоды.

Почти 70% поверхности нашей планеты занято океанами и морями. Твёрдой водой – снегом и льдом – покрыто 20% суши. Из общего количества воды на Земле, равного 1 млрд. 386 млн. кубических километров, 1 млрд. 338 млн. кубических километров приходится на долю солёных вод Мирового океана, и только 35 млн. кубических километров приходится на долю пресных вод. Всего количества океанической воды хватило бы на то, чтобы покрыть ею земной шар слоем более 2,5 километров. На каждого жителя Земли приблизительно приходится 0,33 кубических километров морской воды и 0,008 кубических километров пресной воды. Но трудность в том, что подавляющая часть пресной воды на Земле находится в таком состоянии, которое делает её труднодоступной для человека. Почти 70% пресных вод заключено в ледниковых покровах полярных стран и в горных ледниках, 30% - в водоносных слоях под землёй, а в руслах всех рек содержатся одновременно всего лишь 0,006% пресных вод. Молекулы воды обнаружены в межзвёздном пространстве. Вода входит в состав комет, большинства планет солнечной системы и их спутников.

Состав воды (по массе): 11,19 % водорода и 88,81 % кислорода. Чистая вода прозрачна, не имеет запаха и вкуса. Наибольшую плотность она имеет при 0° С (1 г/см3). Плотность льда меньше плотности жидкой воды, поэтому лед всплывает на поверхность. Вода замерзает при 0° С и кипит при 100° С при давлении 101 325 Па. Она плохо проводит теплоту и очень плохо проводит электричество. Вода - хороший растворитель. Молекула воды имеет угловую форму атомы водорода по отношению к кислороду образуют угол, равный 104,5°. Поэтому молекула воды - диполь: та часть молекулы, где находится водород, заряжена положительно, а часть, где находится кислород, - отрицательно. Благодаря полярности молекул воды электролиты в ней диссоциируют на ионы.

В жидкой воде наряду с обычными молекулами Н20 содержатся ассоциированные молекулы, т. е. соединенные в более сложные агрегаты (Н2О)x благодаря образованию водородных связей. Наличием водородных связей между молекулами воды объясняются аномалии ее физических свойств: максимальная плотность при 4° С, высокая температура кипения (в ряду Н20-Н2S - Н2Sе) аномально высокая теплоемкость . С повышением температуры водородные связи разрываются, и полный разрыв наступает при переходе воды в пар.

Вода - весьма реакционноспособное вещество. При обычных условиях она взаимодействует со многими основными и кислотными оксидами, а также со щелочными и щелочно-земельными металлами. Вода образует многочисленные соединения - кристаллогидраты.

Очевидно, соединения, связывающие воду, могут служить в качестве осушителей. Из других осушающих веществ можно указать Р205, СаО, ВаО, металлический Ма (они тоже химически взаимодействуют с водой), а также силикагель. К важным химическим свойствам воды относится ее способность вступать в реакции гидролитического разложения.

Физические свойства воды.

Вода обладает рядом необычных особенностей:

1. При таянии льда его плотность увеличивается (с 0,9 до 1 г/см³). Почти у всех остальных веществ при плавлении плотность уменьшается.

2. При нагревании от 0 °C до 4 °C (точнее, 3,98 °C) вода сжимается. Соответственно, при остывании - плотность падает. Благодаря этому могут жить рыбы в замерзающих водоёмах: когда температура падает ниже 4 °C, более холодная вода как менее плотная остаётся на поверхности и замерзает, а подо льдом сохраняется положительная температура.

3. Высокая температура и удельная теплота плавления (0 °C и 333,55 кДж/кг), температура кипения (100 °C) и удельная теплота парообразования (2250 КДж/кг ), по сравнению с соединениями водорода с похожим молекулярным весом.

4. Высокая теплоёмкость жидкой воды.

5. Высокая вязкость.

6. Высокое поверхностное натяжение.

7. Отрицательный электрический потенциал поверхности воды.

Все эти особенности связаны с наличием водородных связей. Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По причине этого, а также того, что ион водорода (протон) не имеет внутренних электронных слоев и обладает малыми размерами, он может проникать в электронную оболочку отрицательно поляризованного атома соседней молекулы. Благодаря этому, каждый атом кислорода притягивается к атомам водорода других молекул и наоборот. Определенную роль играет протонное обменное взаимодействие между молекулами и внутри молекул воды. Каждая молекула воды может участвовать максимум в четырёх водородных связях: 2 атома водорода - каждый в одной, а атом кислорода - в двух; в таком состоянии молекулы находятся в кристалле льда. При таянии льда часть связей рвётся, что позволяет уложить молекулы воды плотнее; при нагревании воды связи продолжают рваться, и плотность её растёт, но при температуре выше 4 °С этот эффект становится слабее, чем тепловое расширение. При испарении рвутся все оставшиеся связи. Разрыв связей требует много энергии, отсюда высокая температура и удельная теплота плавления и кипения и высокая теплоёмкость. Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

По сходным причинам вода является хорошим растворителем полярных веществ. Каждая молекула растворяемого вещества окружается молекулами воды, причём положительно заряженные участки молекулы растворяемого вещества притягивают атомы кислорода, а отрицательно заряженные - атомы водорода. Поскольку молекула воды мала по размерам, много молекул воды могут окружить каждую молекулу растворяемого вещества.

Это свойство воды используется живыми существами. В живой клетке и в межклеточном пространстве вступают во взаимодействие растворы различных веществ в воде. Вода необходима для жизни всех без исключения одноклеточных и многоклеточных живых существ на Земле.

Чистая (не содержащая примесей) вода - хороший изолятор. При нормальных условиях вода слабо диссоциирована и концентрация протонов (точнее, ионов гидроксония H3O+) и гидроксильных ионов HO− составляет 0,1 мкмоль/л. Но поскольку вода - хороший растворитель, в ней практически всегда растворены те или иные соли, то есть в воде присутствуют положительные и отрицательные ионы. Благодаря этому вода проводит электричество. По электропроводности воды можно определить её чистоту.

Вода имеет показатель преломления n=1,33 в оптическом диапазоне. Однако она сильно поглощает инфракрасное излучение, и поэтому водяной пар является основным естественным парниковым газом, отвечающим более чем за 60 % парникового эффекта. Благодаря большому дипольному моменту молекул, вода также поглощает микроволновое излучение, на чём основан принцип действия микроволновой печи.

Агрегатные состояния.

1. По состоянию различают:

2. Твёрдое - лёд

3. Жидкое - вода

4. Газообразное - водяной пар

Рис.1 «Типы снежинок»

При атмосферном давлении вода замерзает (превращается в лёд) при температуре в 0 °C и кипит (превращается в водяной пар) при температуре 100 °C. При снижении давления температура плавления воды медленно растёт, а температура кипения - падает. При давлении в 611,73 Па (около 0,006 атм) температура кипения и плавления совпадает и становится равной 0,01 °C. Такое давление и температура называются тройной точкой воды. При более низком давлении вода не может находиться в жидком состоянии, и лёд превращается непосредственно в пар. Температура возгонки льда падает со снижением давления.

При росте давления температура кипения воды растёт, плотность водяного пара в точке кипения тоже растёт, а жидкой воды - падает. При температуре 374 °C (647 K) и давлении 22,064 МПа (218 атм) вода проходит критическую точку. В этой точке плотность и другие свойства жидкой и газообразной воды совпадают. При более высоком давлении нет разницы между жидкой водой и водяным паром, следовательно, нет и кипения или испарения.

Так же возможны метастабильные состояния - пересыщенный пар, перегретая жидкость, переохлаждённая жидкость. Эти состояния могут существовать длительное время, однако они неустойчивы и при соприкосновении с более устойчивой фазой происходит переход. Например, нетрудно получить переохлаждённую жидкость, охладив чистую воду в чистом сосуде ниже 0 °C, однако при появлении центра кристаллизации жидкая вода быстро превращается в лёд.

Изотопные модификации воды.

И кислород, и водород имеют природные и искусственные изотопы. В зависимости от типа изотопов, входящих в молекулу, выделяют следующие виды воды:

1. Лёгкая вода (просто вода).

2. Тяжёлая вода (дейтериевая).

3. Сверхтяжёлая вода (тритиевая).

Химические свойства воды.

Вода является наиболее распространённым растворителем на Земле, во многом определяющим характер земной химии, как науки. Большая часть химии, при её зарождении как науки, начиналась именно как химия водных растворов веществ. Её иногда рассматривают, как амфолит - и кислоту и основание одновременно (катион H+ анион OH-). В отсутствие посторонних веществ в воде одинакова концентрация гидроксид-ионов и ионов водорода (или ионов гидроксония), pKa ≈ ок. 16.

Сама по себе вода относительно инертна в обычных условиях, но её сильно полярные молекулы сольватируют ионы и молекулы, образуют гидраты и кристаллогидраты. Сольволиз, и в частности гидролиз, происходит в живой и неживой природе, и широко используется в химической промышленности.

Химические названия воды.

С формальной точки зрения вода имеет несколько различных корректных химических названий:

1. Оксид водорода

2. Гидроксид водорода

3. Монооксид дигидрогена

4. Гидроксильная кислота

5. англ. hydroxic acid

6. Оксидан (англ. oxidane)

7. Дигидромонооксид

Виды воды.

Вода на Земле может существовать в трёх основных состояниях - жидком, газообразном и твёрдом и в свою очередь приобретать самые разные формы, которые зачастую соседствуют друг с другом. Водный пар и облака в небе, морская вода и айсберги, горные ледники и горные же реки, водоносные слои в земле. Вода способна растворять в себе много веществ, приобретая тот или иной вкус. Из-за важности воды, «как источника жизни» её нередко подразделяют на типы.

Характеристики вод: по особенностям происхождения, состава или применения, выделяют, в числе прочего:

1. Мягкая вода и жёсткая вода - по содержанию катионов кальция и магния

2. Подземные воды

3. Талая вода

4. Пресная вода

5. Морская вода

6. Солоноватая вода (en:Brackish water)

7. Минеральная вода

8. Дождевая вода

9. Питьевая вода, Водопроводная вода

10. Тяжёлая вода, дейтериевая и тритиевая

11. Дистиллированная вода и деионизированная вода

12. Сточные воды

13. Ливневая вода или поверхностные воды

14. По изотопам молекулы:

15. Лёгкая вода (просто вода)

16. Тяжёлая вода (дейтериевая)

17. Сверхтяжёлая вода(тритиевая)

18. Выдуманная вода (обычно со сказочными свойствами)

19. Мёртвая вода - вид воды из сказок

20. Живая вода - вид воды из сказок

21. Святая вода - особый вид воды согласно религиозным учениям

22. Поливода

23. Структурированная вода - термин, применяемый в различных неакадемических теориях.

Мировые запасы воды.

Огромный слой соленой воды, покрывающий большую часть Земли, представляет собой единое целое и имеет примерно постоянный состав. Мировой океан огромен. Его объем достигает 1,35 миллиардов кубических километров. Он покрывает около 72% земной поверхности. Почти вся вода на Земле (97%) находится в мировом океане. Приблизительно 2,1% воды сосредоточено в полярных льдах и ледниках. Вся пресная вода в озерах, реках и в составе грунтовых вод составляет лишь 0,6%. Остальные 0,1% воды входят в состав соленой воды из скважин и солончаковых вод.

20-е столетие характеризуется интенсивным ростом населения Земли, развитием урбанизации. Появились города-гиганты с населением более 10-ти млн. человек. Развитие промышленности, транспорта, энергетики, индустриализация сельского хозяйства привели к тому, что антропогенное воздействие на окружающую среду приняло глобальный характер.

Повышение эффективности мер по охране окружающей среды связано прежде всего с широким внедрением ресурсосберегающих, малоотходных и безотходных технологических процессов, уменьшением загрязнения воздушной среды и водоемов. Охрана окружающей среды представляет собой весьма многогранную проблему, решением которой занимаются, в частности, инженерно-технические работники практически всех специальностей, которые связаны с хозяйственной деятельностью в населенных пунктах и на промышленных предприятиях, которые могут являться источником загрязнения в основном воздушной и водной среды.

Водная среда. Водная среда включает поверхностные и подземные воды.

Поверхностные воды в основном сосредоточены в океане, содержанием 1 млрд. 375 млн. кубических километров-около 98 % всей воды на Земле. Поверхность океана (акватория) составляет 361 млн. квадратных километров. Она примерно в 2,4 раза больше площади суши территории, занимающей 149 млн. квадратных километров. Вода в океане соленая, причем большая ее часть (более 1 млрд. Кубических километров) сохраняет постоянную соленость около 3,5 % и температуру, примерно равную 3,7oС. Заметные различия в солености и температуре наблюдаются почти исключительно в поверхностном слое воды, а также в окраинных и особенно в средиземных морях. Содержание растворенного кислорода в воде существенно уменьшается на глубине 50-60 метров.

Подземные воды бывают солеными, солоноватыми (меньшей солености) и пресными; существующие геотермальные воды имеют повышенную температуру (более 30 °С). Для производственной деятельности человечества и его хозяйственно-бытовых нужд требуется пресная вода, количество которой составляет всего лишь 2,7 % общего объема воды на Земле, причем очень малая ее доля (всего 0,36 %) имеется в легкодоступных для добычи местах. Большая часть пресной воды содержится в снегах и пресноводных айсбергах, находящихся в районах в основном Южного полярного круга. Годовой мировой речной сток пресной воды составляет 37,3 тыс. Кубических километров. Кроме того, может использоваться часть подземных вод, равная 13 тыс. Кубическим километрам. К сожалению, большая часть речного стока в России, составляющая около 5000 кубических километров, приходится на малоплодородные и малозаселенные северные территории. При отсутствии пресной воды используют соленую поверхностную или подземную воду, производя ее опреснение или гиперфильтрацию: пропускают под большим перепадом давлений через полимерные мембраны с микроскопическими отверстиями, задерживающими молекулы соли. Оба эти процесса весьма энергоемки, поэтому представляет интерес предложение, состоящее в использовании в качестве источника пресной воды пресноводных айсбергов (или их части), которые с этой целью буксируют по воде к берегам, не имеющим пресной воды, где организуют их таяние. По предварительным расчетам разработчиков этого предложения, получение пресной воды будет примерно вдвое менее энергоемки по сравнению с опреснением и гиперфильтрацией. Важным обстоятельством, присущим водной среде, является то, что через нее в основном передаются инфекционные заболевания (примерно 80 % всех заболеваний). Впрочем, некоторые из них, например коклюш, ветрянка, туберкулез передаются и через воздушную среду. С целью борьбы с распространением заболеваний через водную среду Всемирная организация здраво охранения (ВОЗ) объявила текущее десятилетие десятилетием питьевой воды.

Пресная вода. Пресные водные ресурсы существуют благодаря вечному круговороту воды. В результате испарения образуется гигантский объем воды, достигающий 525 тыс. км в год. (из-за неполадок шрифта объемы воды указаны без кубометров).

86 % этого количества приходится на соленые воды Мирового океана и внутренних морей - Каспийского. Аральского и др.; остальное испаряется на суше, причем половина благодаря транспирации влаги растениями. Каждый год испаряется слой воды толщиной примерно 1250 мм. Часть ее вновь выпадает с осадками в океан, а часть переносится ветрами на сушу и здесь питает реки и озера, ледники и подземные воды. Природный дистиллятор питается энергией Солнца и отбирает примерно 20 % этой энергии.

Всего 2 % гидросферы приходится на пресные воды, но они постоянно возобновляются. Скорость возобновления и определяет доступные человечеству ресурсы. Большая часть пресных вод - 85 % - сосредоточена во льдах полярных зон и ледников. Скорость водообмена здесь меньше, чем в океане, и составляет 8000 лет. Поверхностные воды суши обновляются примерно в 500 раз быстрее, чем в океане. Еще быстрее, примерно за 10-12 суток, обновляются воды рек. Наибольшее практическое значение для человечества имеют пресные воды рек.

Реки всегда были источником пресной воды. Но в современную эпоху они стали транспортировать отходы. Отходы на водосборной территории по руслам рек стекают в моря и океаны. Большая часть использованной речной воды возвращается в реки и водоемы в виде сточных вод. До сих пор рост очистных сооружений отставал от роста потребления воды. И на первый взгляд в этом заключается корень зла. На самом деле все обстоит гораздо серьезнее. Даже при самой совершенной очистке, включая биологическую, все растворенные неорганические вещества и до 10 % органических загрязняющих веществ остаются в очищенных сточных водах. Такая вода вновь может стать пригодной для потребления только после многократного разбавления чистой природной водой. И здесь для человека важно соотношение абсолютного количества сточных вод, хотя бы и очищенных, и водного стока рек.

Мировой водохозяйственный баланс показал, что на все виды водопользования тратится 2200 км воды в год. На разбавление стоков уходит почти 20 % ресурсов пресных вод мира. Расчеты на 2000 г. в предположении, что нормы водопотребления уменьшатся, а очистка охватит все сточные воды, показали, что все равно ежегодно потребуется 30 - 35 тыс. км пресной воды на разбавление сточных вод. Это означает, что ресурсы полного мирового речного стока будут близки к исчерпанию, а во многих районах мира они уже исчерпаны. Ведь 1 км очищенной сточной воды "портит" 10 км речной воды, а не очищенной - в 3-5 раз больше. Количество пресной воды не уменьшается, но ее качество резко падает, она становится не пригодной для потребления.

Человечеству придется изменить стратегию водопользования. Необходимость заставляет изолировать антропогенный водный цикл от природного. Практически это означает переход на замкнутое водоснабжение, на маловодную или малоотходную, а затем на "сухую" или безотходную технологию, сопровождающуюся резким уменьшением объемов потребления воды и очищенных сточных вод.

Запасы пресной воды потенциально велики. Однако в любом районе мира они могут истощиться из-за нерационального водопользования или загрязнения. Число таких мест растет, охватывая целые географические районы. Потребность в воде не удовлетворяется у 20 % городского и 75 % сельского населения мира. Объем потребляемой воды зависят от региона и уровня жизни и составляет от 3 до 700 л в сутки на одного человека. Потребление воды промышленностью также зависит от экономического развития данного района. Например, в Канаде промышленность потребляет 84 % всего водозабора, а в Индии - 1 %. Наиболее водоемкие отрасли промышленности - сталелитейная, химическая, нефтехимическая, целлюлозно-бумажная и пищевая. На них уходит почти 70 % всей воды, затрачиваемой в промышленности. В среднем в мире на промышленность уходит примерно 20 % всей потребляемой воды. Главный же потребитель пресной воды - сельское хозяйство: на его нужды уходит 70-80 % всей пресной воды. Орошаемое земледелие занимает лишь 15-17 % площади сельскохозяйственных угодий, а дает половину всей продукции. Почти 70 % посевов хлопчатника в мире существует благодаря орошению.

Суммарный сток рек СНГ (СССР) за год составляет 4720 км. Но распределены водные ресурсы крайне неравномерно. В наиболее обжитых регионах, где проживает до 80 % промышленной продукции и находится 90 % пригодных для сельского хозяйства земель, доля водных ресурсов составляет всего 20 %. Многие районы страны недостаточно обеспечены водой. Это юг и юго-восток европейской части СНГ, Прикаспийская низменность, юг Западной Сибири и Казахстана, и некоторые другие районы Средней Азии, юг Забайкалья, Центральная Якутия. Наиболее обеспечены водой северные районы СНГ, Прибалтика, горные районы Кавказа, Средней Азии, Саян и Дальнего Востока.

Сток рек изменяется в зависимости от колебаний климата. Вмешательство человека в естественные процессы затронуло уже и речной сток. В сельском хозяйстве большая часть воды не возвращается в реки, а расходуется на испарение и образование растительной массы, так как при фотосинтезе водород из молекул воды переходит в органические соединения. Для регулирования стока рек, не равномерного в течение года, построено 1500 водохранилищ (они регулируют до 9 % всего стока). На сток рек Дальнего Востока, Сибири и Севера европейской части страны хозяйственная деятельность человека пока почти не повлияла. Однако в наиболее обжитых районах он сократился на 8 %, а у таких рек, как Терек, Дон, Днестр и Урал, - на 11-20 %. Заметно уменьшился водный сток в Волге, Сырдарье и Амударье. В итоге сократился приток воды к Азовскому морю - на 23 %, к Аральскому - на 33 %. Уровень Арала упал на 12,5 м.

Ограниченные и даже скудные во многих странах запасы пресных вод значительно сокращаются из-за загрязнения. Обычно загрязняющие вещества разделяют на несколько классов в зависимости от их природы, химического строения и происхождения.

Загрязнение водоемов.Пресные водоемы загрязняются в основном в результате спуска в них сточных вод от промышленных предприятий и населенных пунктов. В результате сброса сточных вод изменяются физические свойства воды (повышается температура, уменьшается прозрачность, появляются окраска, привкусы, запахи) ; на поверхности водоема появляются плавающие вещества, а на дне образуется осадок; изменяется химический состав воды (увеличивается содержание органических и неорганических веществ, появляются токсичные вещества, уменьшается содержание кислорода, изменяется активная реакция среды и др.) ; изменяется качественный и количественный бактериальный состав, появляются болезнетворные бактерии. Загрязненные водоемы становятся непригодными для питьевого, а часто и для технического водоснабжения; теряют рыбохозяйственное значение и т. д. Общие условия выпуска сточных вод любой категории в поверхностные водоемы определяются народнохозяйственной их значимостью и характером водопользования. После выпуска сточных вод допускается некоторое ухудшение качества воды в водоемах, однако это не должно заметно отражаться на его жизни и на возможности дальнейшего использования водоема в качестве источника водоснабжения, для культурных и спортивных мероприятий, рыбохозяйственных целей.

Наблюдение за выполнением условий спуска производственных сточных вод в водоемы осуществляется санитарно-эпидемиологическими станциями и бассейновыми управлениями.

Нормативы качества воды водоемов хозяйственно-питьевого культурно-бытового водопользования устанавливают качество воды для водоемов по двум видам водопользования: к первому виду относятся участки водоемов, используемые в качестве источника для централизованного или нецентрализованного хозяйственно-питьевого водоснабжения, а также для водоснабжения предприятий пищевой промышленности; ко второму виду - участки водоемов, используемые для купания, спорта и отдыха населения, а также находящиеся в черте населенных пунктов.

Отнесение водоемов к тому или иному виду водопользования проводится органами Государственного санитарного надзора с учетом перспектив использования водоемов.

Приведенные в правилах нормативы качества воды водоемов относятся к створам, расположенным на проточных водоемах на 1 км выше ближайшего по течению пункта водопользования, а на непроточных водоемах и водохранилищах на 1км в обе стороны от пункта водопользования.

Большое внимание уделяется вопросам предупреждения и устранения загрязнений прибрежных районов морей. Нормативы качества морской воды, которые должны быть обеспечены при спуске сточных вод, относятся к району водопользования в отведенных границах и к створам на расстоянии 300 м в стороны от этих границ. При использовании прибрежных районов морей в качестве приемника производственных сточных вод содержание вредных веществ в море не должно превышать ПДК, установленные по санитарно-токсикологическому, общесанитарному и рганолептическому лимитирующим показателям вредности. При этом требования к спуску сточных вод дифференцированы применительно к характеру водопользования. Море рассматривается не как источник водоснабжения, а как лечебный оздоровительный, культурно бытовой фактор.

Поступающие в реки, озера, водохранилища и моря загрязняющие вещества вносят значительные изменения в установившийся режим и нарушают равновесное состояние водных экологических систем. В результате процессов превращения загрязняющих водоемы веществ, протекающих под воздействием природных факторов, в водных источниках происходит полное или частичное восстановление их первоначальных свойств. При этом могут образовываться вторичные продукты распада загрязнений, оказывающих отрицательно влияние на качество воды.

Самоочищение воды водоемов - это совокупность взаимосвязанных гидродинамических, физико-химических, микробиологических и гидробиологических процессов, ведущих к восстановлению первоначального состояния водного объекта.

В связи с тем, что в сточных водах промышленных предприятий могут содержаться специфические загрязнения, их спуск в городскую водоотводящую сеть ограничен рядом требований. Выпускаемые в водоотводящую сеть производственные сточные воды не должны: нарушать работу сетей и сооружений; оказывать разрушающего воздействия на материал труб и элементы очистных сооружений; содержать более 500мг/л взвешенных и всплывающих веществ; содержать вещества, способные засорять сети или отлагаться на стенках труб; содержать горючие примеси и растворенные газообразные вещества, способные образовывать взрывоопасные смеси; содержать вредные вещества, препятствующие биологической очистке сточных вод или сбросу в водоем; иметь температуру выше 40 °С.

Производственные сточные воды не удовлетворяющие этим требованиям, должны предварительно очищаться и лишь после этого сбрасываться в городскую водоотводящую сеть.

Таблица 1

Мировые запасы воды

№ п/п Наименование объектов Площадь рас­пространения в млн. куб.км Объем, тыс. куб. км

Доля в мировом запасе,

1 Мировой океан 361,3 1338000 96,5
2 Подземные воды 134,8 23400 1,7
3

в том числе подземные:

пресные воды

10530 0,76
4 Почвенная влага 82,0 16,5 0,001
5 Ледники и постоянные снега 16,2 24064 1,74
6 Подземные льды 21,0 300 0,022
7 Вода озер
8 пресных 1,24 91,0 0,007
9 соленых 0,82 85.4 0,006
10 Вода болот 2,68 11,5 0,0008
11 Вода рек 148,2 2,1 0,0002
12 Вода в атмосфере 510,0 12,9 0,001
13 Вода в организмах 1,1 0,0001
14 Общие запасы воды 1385984,6 100,0
15 Общие запасы пресной воды 35029,2 2,53

Заключение.

Вода - одно из главных богатств на Земле. Трудно представить, что стало бы с нашей планетой, если бы исчезла пресная вода. Человеку нужно выпивать в день около 1,7 литров воды. И примерно в 20 раз больше ежедневно требуется каждому из нас для мытья, приготовления пищи и так далее. Угроза исчезновения пресной воды существует. От загрязнения воды страдает всё живое, она вредна для здоровья человека.

Вода – вещество привычное и необычное. Известный советский ученый академик И.В. Петрянов свою научно – популярную книгу о воде назвал «Самое необыкновенное вещество в мире». А доктор биологических наук Б.Ф.Сергеев начал свою книгу “Занимательная физиология” с главы о воде – «Вещество, которое создало нашу планету».

Ученые правы: нет на Земле вещества более важного для нас, чем обыкновенная вода, и в то же время не существует другого такого же вещества, в свойствах которого было бы столько противоречий и аномалий, сколько в её свойствах.

Библиографический список:

1. Коробкин В. И., Передельский Л. В. Экология. Учебное пособие для вузов. - Ростов /на/Дону. Феникс, 2005.

2. Моисеев Н. Н. Взаимодействие природы и общества: глобальные проблемы // Вестник РАН, 2004. Т. 68. № 2.

3. Охрана окружающей среды. Учеб. пособие: В 2т / Под ред. В. И. Данилов - Данильян. – М.: Изд-во МНЭПУ, 2002.

4. Белов С. В. Охрана окружающей среды / С. В. Белов. – М. Высшая школа, 2006. – 319 с.

5. Дерпгольц В. Ф. Вода во вселенной. - Л.: "Недра", 2000.

6. Крестов Г. А. От кристалла к раствору. - Л.: Химия,2001.

7. Хомченко Г.П. Химия для поступающих в ВУЗы. - М., 2003г.

Четыре элемента природы, четыре стихии родили на Земле жизнь — это огонь, воздух, земля и вода. Причем вода появилась на нашей планете на несколько миллионов лет, чем та же почва или воздух.

Казалось бы, вода уже изучена человеком, но ученые до сих пор находят самые удивительные факты об этом природном элементе.

Вода стоит особняком в истории нашей планеты.
Нет природного тела, которое могло бы
сравниться с ней по влиянию на ход основных,
самых грандиозных, геологических процессов.
В.И. Вернадский

Вода — это самое распространенное неорганическое соединение на земле. И первое исключительное свойство воды в том, что она состоит из соединений атомов водорода и кислорода. Казалось бы, такое соединение, согласно химическим законам, должно быть газообразным. А вода — жидкая!

Так, например, всем известно, что вода существует в природе в трех состояниях: твердом, жидком и в виде пара. Но уже сейчас выделяют более 20 состояний воды, из которых только 14 — это вода в замерзшем состоянии.

Удивительно, но вода — единственное вещество на Земле, плотность которого в твердом состоянии меньше, чем в жидком. Именно поэтому лед не тонет, а водоемы не промерзают до самого дна. Разве что при экстремально холодных температурах.

Еще один факт: вода — универсальный растворитель. По количеству и качеству растворенных в воде элементов и минералов ученые выделяют приблизительно 1330 видов воды: минеральная и талая, дождевая и роса, ледниковая и артезианская…

Вода в природе

В природе вода играет важнейшую роль. При этом она оказывается задействованной в самых разных механизмах и жизненных циклах на земле. Вот лишь несколько фактов, которые наглядно демонстрируют ее значимость для нашей планеты:

  • Значение круговорота воды в природе просто огромно. Именно этот процесс позволяет животным и растениям получать столь необходимую для их жизни и существования влагу.
  • Моря и океаны, реки и озера — все водоемы играют важнейшую роль в создании климата той или иной местности. А высокая теплоемкость воды обеспечивает комфортный температурный режим на нашей планете.
  • Вода играет одну из ключевых ролей в процессе фотосинтеза. Не будь воды, растения не могли бы перерабатывать углекислый газ в кислород, а значит — воздух был бы непригоден для дыхания.

Вода в жизни человека

Главный потребитель воды на Земле — это человек. Не случайно все мировые цивилизации формировались и развивались исключительно вблизи водоемов. Значение же воды в жизни человека просто огромное.

  • Тело человека тоже состоит из воды. В теле новорожденного — до 75% воды, в теле пожилого человека — более 50%. При этом известно, что без воды человек не выживет. Так, когда у нас исчезает хотя бы 2% воды из организма, начинается мучительная жажда. При потере более 12% воды человеку уже не восстановится без помощи врачей. А потеряв 20% воды из организма, человек умирает.
  • Вода является для человека исключительно важным источником питания. По статистике человек за месяц в норме потребляет 60 литров воды (2 литра в день).
  • Именно вода доставляет к каждой клеточке нашего организма кислород и питательные вещества.
  • Благодаря наличию воды наш организм может регулировать температуру тела.
  • Вода также позволяет перерабатывать пищу в энергию, помогает клеткам усваивать питательные вещества. А еще вода выводит шлаки и отходы из нашего тела.
  • Человек повсеместно использует воду для своих нужд: для питания, в сельском хозяйстве, для различного производства, для выработки электроэнергии. Неудивительно, что борьба за водные ресурсы идет нешуточная. Вот всего лишь несколько фактов:

Более 70% нашей планеты покрыто водой. Но при этом всего 3% всей воды можно отнести к питьевой. И доступ к этому ресурсу с каждым годом становится все труднее. Так, по данным РИА-новости за последние 50 лет на нашей планете произошло более 500 конфликтов, связанных с борьбой за водные ресурсы. Из них более 20 конфликтов переросли в вооруженные столкновения. Это всего лишь одна из цифр, ярко демонстрирующих то, насколько важна роль воды в жизни человека.

Загрязнение воды

Загрязнением воды называют процесс насыщения водоемов вредными веществами, отходами производства и бытовыми отходами, в результате которого вода теряет большую часть своих функций и становится непригодной для дальнейшего потребления.

Основные источники загрязнения:

  1. Нефтеперерабатывающие предприятия
  2. Тяжелые металлы
  3. Радиоактивные элементы
  4. Ядохимикаты
  5. Стоки городских канализаций и животноводческих ферм.

Ученые давно бьют тревогу, что мировой океан ежегодно получает свыше 13 млн. тонн отходов нефтепродуктов. При этом Тихий океан получает до 9 млн.тонн, а Атлантика — более 30 млн.тонн.

По данным Всемирной Организации Здравоохранения на нашей планете уже не осталось источников, в которых присутствовала бы чистая природная вода. Есть лишь водоемы, загрязненные менее остальных. И это грозит катастрофой нашей цивилизации, так как без воды человечество просто не выживет. А заменить ее нечем.