Сплавы железа с углеродом, в которых содержание углерода более 1,7% называются чугунами.

Чугуны различаются по структуре, способам изготовления, химическому составу и назначению.
По структуре чугуны бывают серые, белые и ковкие. По способам изготовления-обыкновенные и модифицированные.
По химическому составу чугуны различают не легированные и легированные, т. е. такие, в составе которых имеются специальные примеси.

Серый чугун

Серый чугун наиболее широко применяется в машиностроении для отливок из него различных деталей машин. Он характеризуется тем, что углерод в нём находится в свободном состоянии в виде графита. Поэтому серый чугун хорошо обрабатывается режущими инструментами. В изломе он имеет серый и темно-серый цвет. Получается серый чугун путём медленного охлаждения после плавления или нагревания. Получению серого чугуна также способствует увеличение в его составе содержания углерода и кремния.
Механические качества серого чугуна зависят от его структуры.
По структуре серый чугун бывает:
  1. феррито-графнтовый,
  2. феррито-дерлито-графитовый и
  3. перлито-графитовый.

Если серый чугун быстро охлаждать после плавления, то он отбеливается, т. е. становится очень хрупким и твердым. Серый чугун в несколько раз лучше работает на сжатие чем на растяжение.

Серый чугун достаточно хорошо сваривается с применением предварительного подогрева и в качестве присадочного мате риала специальных чугунных стержней с повышенным содержанием углерода и кремния. Сварка без предварительного подогрев затруднена вследствие отбеливания чугуна в зонах шва.

Белый чугун

Белый чугун применяется в машиностроении в значительна меньших количествах, чем серый. Он представляет собой сплав железа с углеродом, в котором углерод находится в виде химического соединения с железом. Белый чугун очень хрупкий и твёрдый. Он не поддаётся механической обработке режущими инструментами и применяется для отливки деталей, не требующих обработки, или подвергается шлифованию абразивными кругами. В машиностроении применяется белый чугун как обыкновенный, так и легированный.

Сварка белого чугуна весьма затруднительна в связи с образованием трещин при нагреве и охлаждении, а также из-за неоднородности структуры, образующейся в месте сварки.

Ковкий чугун

Ковкий чугун обычно получают из отливок белого чугуна путем длительного томления их в печах при температуре 800-950°С, Существуют два способа получения ковкого чугуна: американский и европейский.

При американском способе томление производится в песке при температуре 800-850°С. При этом углерод из химически связанного состояния переходит в свободное состояние в виде графита, располагаясь между зёрнами чистого железа. Чугун приобретает вязкость, почему и называется ковким.

При европейском способе томление отливок производится в железной руде при температуре 850-950°. При этом углерод из химически связанного состояния с поверхности отливок переходит в железную руду и таким путём поверхность отливок обезуглероживается и становится мягкой, почему и чугун называется ковким, хотя сердцевина остается хрупкой.

В обозначениях марок ковкого чугуна после букв пишется число, показывающее среднюю величину предела прочности при разрыве в кг/мм2, а затем число, показывающее удлинение в %.

Например КЧ37-12 обозначает ковкий чугун, с пределом прочности, равным 37 кг/мм2, и удлинением 12%.
Сварка ковкого чугуна сопряжена с затруднениями в связи с отбеливанием чугуна в зоне шва.

Модифицированный чугун

Модифицированный чугун отличается от обычного серого чугуна тем, что в нем большее количество углерода находится в виде графита, чем в сером чугуне.

Модифицирование заключается в том, что при плавлении чугуна в жидкий металл добавляется некоторое количество присадок, способствующих выделению углерода в виде графита при затвердевании и охлаждении. Этот процесс модификации при одинаковом химическом составе чугуна значительно повышает механические свойства чугуна и является весьма важным. Обозначение марок модифицированного чугуна подобно обозначению марок серого чугуна.

Чугунами называют железоуглеродистые сплавы, содержащие более 2 %. углерода. Чугун обладает более низкими механическими свойствами, чем сталь, но дешевле и хорошо отливается в изделия сложной формы. Различают несколько видов чугуна. Белый чугун, в котором весь углерод (2,0...3,8%) находится в связанном состоянии в виде Fe 3 C (цементита), что и определяет его свойства: высокие твердость и хрупкость, хорошую сопротивляемость износу, плохую обрабатываемость режущими инструментами. Белый чугун применяют для получения серого и ковкого чугуна и стали. Серый чугун содержит углерод в связанном состоянии только частично (не более 0,5%). Остальной углерод находится в чугуне в свободном состоянии в виде графита. Графитовые включения делают цвет излома серым. Чем излом темнее, тем чугун мягче. Образование графита происходит в результате термической обработки белого чугуна, когда часть цементита распадается на мягкое пластичное железо и графит. В зависимости от преобладающей структуры различают серый чугун на перлитной, ферритной или ферритоперлитной основе. При медленном охлаждении сплавов железо – углерод происходит выделение графита. Серый чугун широко применяется в машиностроении, так как легко обрабатывается и обладает хорошими свойствами. В зависимости от прочности серый чугун подразделяют на 10 марок (ГОСТ 1412). Серые чугуны при малом сопротивлении растяжению имеют достаточно высокое сопротивление сжатию. Серые чугуны содержат углерода – 3,2…3,5 % ; кремния – 1,9…2,5 % ; марганца –0,5…0,8 % ; фосфора – 0,1…0,3 % ; серы – < 0,12 % . Учитывая малое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать этот материал для деталей, которые подвергаются сжимающим или изгибающим нагрузкам. В станкостроении это – базовые, корпусные детали, кронштейны, зубчатые колеса, направляющие; в автостроении - блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления. Отливки из серого чугуна также используются в электромашиностроении, для изготовления товаров народного потребления. Свойства серого чугуна зависят от режима охлаждения и наличия некоторых примесей. Например, чем больше кремния, тем больше выделяется графита, а потому чугун делается мягче. Серый чугун имеет умеренную твердость и легко обрабатывается режущими инструментами. Серый чугун, применяемый в строительстве. Лучшими прочностными свойствами и износостойкостью обладают перлитные серые чугуны. Из серого чугуна отливают элементы конструкций, хорошо работающие на сжатие: колонны, опорные подушки, башмаки, тюбинги, отопительные батареи, трубы водопроводные и канализационные, плиты для полов, зубчатые колеса и другие детали. При маркировке серого и модифицированного чугуна, например СЧ12-28, первые две цифры обозначают предел прочности при растяжении, последующие две – предел прочности при изгибе.

В готовом чугуне содержится около 93% железа, до 5 % углерода и небольшое количество примесей кремния, марганца, фосфора, серы и некоторых других элементов, перешедших в чугун из пустой породы.

13.Чугуны с пластинчатой и хлопьевидной формой графитных включений. Способы получения, свойства, маркировка. Серые чугуны - образуются только при малых скоростях охлаждения в узком интервале температур, когда мала степень переохлаждения жидкой фазы. В этих условиях весь углерод или его большая часть графитизируется в виде пластинчатого графита, а содержание углерода в виде цементита составляет не более 0,8 %. У серых чугунов хорошие технологические и прочностные свойства, что определяет широкое применение их как конструкционного материала.

Серые, высокопрочные, ковкие чугуны характеризуются тем, что весь углерод в них или часть его находится в свободном состоянии в виде графита, равномерно распределенного в металлической основе.

Формы выделения графита у них различные. По структуре металлической основы эти чугуны могут быть:

а) ферритными (из феррита и графита);

б) феррито–перлитными (из феррита, перлита, графита);

в) перлитными (из перлита, графита).

Таким образом, их структура представляет собой металлическую основу, похожую на доэвтектоидную и эвтектоидную сталь, пронизанную графитными включениями.

На графитизацию чугуна существенное влияние оказывает количество присутствующих в нем элементов, наличие центров кристаллизации графита и скорость охлаждения.

Все элементы, вводимые в чугун, делятся на графитообразующие (С, Si, Al, В, Br и др.) и карбидообразующие (Мn, Сr, V, W, Ti, Mo и др.).

Скорость охлаждения оказывает существенное влияние на графитизацию чугуна. Чем меньше скорость охлаждения, тем полнее протекают процессы графитизации.

В серых чугунах графит присутствует в форме пластинок (чешуек).

Свойства серых чугунов при одинаковой металлической основе зависят от размеров, количества и распределения графитных включений. Их можно рассматривать как трещины, поры, внутренние разрезы, нарушающие целостность металлической основы.

Чем больше графита в чугуне, чем грубее его включения и чем меньше они изолированы друг от друга, тем ниже качество чугуна. С увеличением количества перлита при одной и той же форме графитных включений механические свойства (прочность, твердость) чугуна повышаются.

Серые чугуны маркируются буквами: С – серый и Ч – чугун, после буквы следуют цифры, указывающие величину сопротивления при растяжении.

Ковкие чугуны получают отжигом отливок, изготовленных из белого чугуна. В процессе отжига цементит, входящий в структуру белого чугуна, распадается на железо, и графит, имеющий хлопьевидную форму (при затвердевании отливок – обычного серого чугуна – такую форму графит не принимает). Хлопьевидная форма графита улучшает пластические свойства чугуна: такой чугун не разрешается при ударах и изгибе.

В зависимости от строения металлической основы различают перлитный, феррито-перлитный и ферритный ковкие чугуны. Последний из них наиболее пластичен, твердость его минимальна. Маркируется ковкий чугун буквами: К – ковкий, Ч – чугун и цифрами. Первые две цифры –  2 , вторые – относительное удлинение.

В числе самых распространенных видов чугуна - серый и белый. Что представляет собой каждый из них?

Что представляет собой серый чугун?

Соответствующий тип чугуна относится к самым распространенным в сфере машиностроения. Данный металл характеризуется наличием в шлифе графита пластинчатой формы. Его содержание в сером чугуне может быть разным. Чем оно больше, тем более темным становится металл на изломе, а также тем мягче чугун. Отливки из рассматриваемого типа металла могут выпускаться любой толщины.

Основные особенности серого чугуна:

  1. минимальное относительное удлинение - как правило, не превышающее 0,5 %;
  2. невысокая ударная вязкость;
  3. низкая пластичность.

В сером чугуне имеется небольшой процент связанного углерода - не более 0,5 %. Оставшаяся часть углерода представлена в виде графита - то есть в свободном состоянии. Серый чугун может выпускаться на перлитной, ферритной, а также смешанной - феррито-перлитной - основе. В рассматриваемом металле, как правило, присутствует значительный процент кремния.

Серый чугун достаточно легко поддается обработке посредством режущих инструментов. Данный металл используется при отливе изделий, которые оптимальны с точки зрения сопротивления сжатию. Например, различных опорных элементов, батарей, водопроводных труб. Распространено применение серого чугуна и в машиностроении - чаще всего при изготовлении деталей, для которых не характерны ударные нагрузки. Например, корпусов для станков.

Что представляет собой белый чугун?

Данный тип чугуна характеризуется наличием углерода, который практически полностью представлен в структуре металла в связанном состоянии. Рассматриваемый металл - твердый и в то же время достаточно хрупкий. Он устойчив к коррозии, износу, температурному воздействию. Белый чугун довольно трудно поддается обработке посредством ручных инструментов. На изломе этот металл имеет светлый оттенок, лучистую структуру.

Основная сфера применения белого чугуна - последующая переработка. Как правило, он переделывается в сталь, во многих случаях - как раз таки в серый чугун. В промышленности его применение не слишком распространено по причине хрупкости и трудности обработки.

Процента кремния в белом чугуне существенно меньше, чем в сером. В рассматриваемом металле также может быть более высокая концентрация марганца и фосфора (отметим, что во многом их наличие предопределяется химическим составом руды, из которой выплавляется чугун). Собственно, увеличение количества кремния в металле сопровождается сокращением объема связанного углерода в его структуре.

Сравнение

Основное отличие серого чугуна от белого в том, что в первом имеется небольшой процент связанного углерода, во втором - наоборот, присутствует главным образом связанный углерод. Данная особенность предопределяет разницу между рассматриваемыми металлами в аспекте:

  • твердости;
  • цвета на изломе;
  • устойчивости к износу;
  • хрупкости;
  • обрабатываемости ручным инструментом;
  • сферы применения;
  • процента связанного и свободного углерода;
  • процента кремния, марганца, фосфора.

Более наглядно изучить то, в чем разница между серым и белым чугуном заключается в указанных аспектах, нам поможет небольшая таблица.

Таблица

Серый чугун Белый чугун
Менее твердый Более твердый
Более темный на изломе Более светлый на изломе
Менее устойчив к износу Более устойчив к износу
Менее хрупок Более хрупок
Хорошо поддается обработке ручным инструментом Не слишком хорошо поддается обработке ручным инструментом
Активно применяется в различных сферах промышленности Используется главным образом в целях изготовления стали, серого чугуна
Имеет большой процент свободного углерода - в виде графита Включает в основном связанный углерод
Характеризуется большим процентом кремния, меньшим - марганца, фосфора Характеризуется меньшим процентом кремния, большим - марганца, фосфора

Серые, высокопрочные и ковкие чугуны относятся к материалам, в которых весь углерод или его часть находится в виде графита. Излом этих чугунов – серый, матовый. В их структуре различают: структуру металлической основы и выделения графита. Отличаются они друг от друга только формой выделений графита.

В серых чугунах графит выделяется в виде пластинок (прожилок, чешуек); в высокопрочных – в виде шариков; в ковких – в виде хлопьев (рис. 4.2).

Пластинчатый графит. В обычном сером чугуне графит образуется в виде лепестков; такой графит называется пластинчатым. На рис. 4.2, а показана структура обычного ферритного чугуна с прожилками графита; пространственный вид таких графитных включений показан на рис. 4.3, а (видно пересечение пластинчатых включений плоскостью шлифа).

Шаровидный графит . В современных так называемых высокопрочных чугунах, выплавленных с присадкой небольшого количества магния (или церия), графит приобретает форму шара. На рис. 4.2, б показана микроструктура серого чугуна с шаровидным графитом, а на рис. 4.3, б – фотография шаровидного графитного включения в электронном микроскопе.

Хлопьевидный графит. Если при отливке получить белый чугун, а затем, используя неустойчивость цементита, с помощью отжига разложить его, то образующийся графит приобретает компактную, почти равноосную, но не округлую форму. Такой графит называется хлопьевидным, или углеродом отжига. Микроструктура чугуна с хлопьевидным графитом показана на рис. 4.2, в . На практике чугун с хлопьевидным графитом называют ковким чугуном.

а б в г

Рис. 4.2. Форма графита в чугунах:

а – пластинчатая (обычный серый чугун), × 100; б – шаровидная (высокопрочный чугун), × 200; в – хлопьевидная (ковкий чугун), × 100; г – вермикулярная, × 100

Рис. 4.3. Графитные включения в чугуне (× 2000):

а – пластинчатые; б – шаровидные

Вермикулярный графит – в виде глистообразных прожилок (рис. 4.2, г ).

Таким образом, чугуны называют:

– с пластинчатым графитом обычным серым чугуном;

– с червеобразным графитом – серым вермикулярным чугуном;

– чугун с шаровидным графитом – высокопрочным чугуном;

– чугун с хлопьевидным графитом – ковким чугуном.

По структуре металлической основы все чугуны классифицируются:

1) на ферритные – со структурой феррита и графита (количество связанного углерода С связ = 0,025%);

2) феррито-перлитные ‑ со структурой феррита, перлита и графита (количество С связ = от 0,025 до 0,8%);

3) перлитные ‑ со структурой перлита и графита (количество С связ = 0,8%).

Отсюда можно сделать заключение, что металлическая основа в этой группе чугунов похожа на структуру эвтектоидной и доэвтектоидной стали и железа и отличается только наличием графитных включений (углерода в свободном состоянии), предопределяющих специфические свойства чугунов.

а б в

Рис. 4.4. Микроструктура серого чугуна:

а – перлитного, × 200; б – феррито-перлитного, × 100; в – ферритного, × 100

Структура перлитного чугуна состоит из перлита с включениями графита (рис. 4.4, а - графит в виде прожилок; типично для серого чугуна). Перлит содержит 0,8% С, следовательно, это количество углерода в сером перлитном чугуне находится в связанном состоянии (т. е. в виде Fe 3 C), остальное количество находится в свободном виде, т. е. в форме графита.

Феррито-перлитный чугун (рис. 4.4, б ) состоит из феррита и перлита + включения веретенообразного графита. В этом чугуне количество связанного углерода меньше 0,8% С.

В ферритном чугуне (рис. 4.4, в ) металлической основой является феррит, и весь углерод, имеющийся в сплаве, присутствует в форме графита (на фотографии в виде веретенообразного графита).

На схемах структур (табл. 4.1) обобщается описанная выше классификация чугуна по строению металлической основы и форме графита.

Серые чугуны. Серые чугуны, как и белые, получаются непосредственно при отливке (при кристаллизации из жидкого расплава). Поскольку образование графита из жидкости – медленный процесс (работа образования зародыша велика: требуется значительная диффузия атомов углерода и отвод атомов железа от фронта кристаллизации графита), то он возможен только в узком интервале температур. Следовательно, охлаждение серого чугуна ведется медленно, и цементит, выделяющийся из жидкого или твердого раствора, будучи неустойчивым химическим соединением, в особенности при высоких температурах, распадается с образованием графита:

Fe 3 C ® Fe γ (С) + C гр при температуре выше 727°С

Fe 3 С ® Fe α (С) + С гр при температуре ниже 727°С (ниже линии PSK).

С ускорением охлаждения чугуна вероятность образования в нем графита уменьшается и при определенной скорости охлаждения часть сплава может закристаллизоваться в соответствии со стабильной, а часть, например поверхностный слой, ‑ с метастабильной диаграммами. Чугунные отливки, у которых поверхностные слои имеют структуру белого чугуна, а сердцевина – серого, называют отбеленными. Отбел их на некоторую глубину – следствие более быстрого охлаждения поверхности. Следовательно, обязательным условием для получения серого чугуна является очень малая скорость охлаждения расплава.

Графит в сером чугуне выделяется в виде пластин. Пластинчатые включения графита в серых чугунах можно рассматривать как трещины, надрезы, создающие большие концентрации напряжений в металлической основе. Поэтому свойства этих чугунов сильно отличаются от свойств стали.

Для определения наличия графита и формы его включений исследуют нетравленый микрошлиф с помощью металлографического микроскопа. Графит выглядит темной фазой на светлом фоне полированной металлической основы, затем микрошлиф травят (3–5%-ным раствором HNO 3 в спирте) и устанавливают структуру металлической основы.

По степени графитизации различают несколько видов серых чугунов: перлитный, перлито-ферритный и ферритный чугун. Если количество связанного углерода будет составлять больше 1%, такой чугун называется половинчатым. Его структура состоит из ледебурита, перлита и графита.

Таблица 4.1

Схемы структур чугуна

Однако кроме скорости охлаждения, существенное влияние на процесс графитизации оказывает количество присутствующих примесей, легирующих элементов и центров кристаллизации (модификаторов).

Все элементы, вводимые в чугун, делятся:

1) на элементы, препятствующие графитизации (Mn, Cr, W, Мо, S, О 2 и т.д.), которые способствуют получению углерода в связном состоянии в виде легированного цементита и других карбидов и препятствуют распаду его при повышенных температурах;

2) элементы графитообразующие (Si, C, Al, Ni, Cu и др.), которые способствуют получению углерода в свободном состоянии в виде графита.

Примеси Mn, Si, S, Р, присутствующие в чугуне, главным образом и влияют на процесс графитизации, а следовательно, на структуру и свойства чугуна.

Чтобы определить, какую структуру следует ожидать в зависимости от суммарного содержания углерода и кремния, а также в зависимости от скорости охлаждения (толщины стенки отливки), пользуются структурной диаграммой (рис. 4.5).

Рис. 4.5. Влияние скорости охлаждения и суммарного содержания кремния

и углерода в чугуне на его структуру:

I – белые чугуны; II – серые перлитные чугуны; III – серые ферритные чугуны

Следовательно, чтобы избежать отбела чугуна, детали тонкого сечения отливают из чугуна с повышенным содержанием графитообразующих элементов (Si, Ni, С). Для отливки деталей крупного сечения можно применить чугун с меньшим содержанием этих элементов.

Величина и форма выделившихся графитных включений зависит также от наличия в жидком чугуне центров кристаллизации.

Центрами кристаллизации могут быть мельчайшие частички окислов Al 2 O 3 , CaО, SiO 2 , MgO и др. Воздействие на процесс графитизации с помощью образования дополнительных центров кристаллизации называется модифицированием, а сами элементы называются модификаторами. Модификаторы вводят в жидкий чугун перед его разливкой.

Серый чугун имеет низкие механические свойства, т. к. пластинки графита надрезают металлическую основу.

В зависимости от прочности металлической основы и количества графита серые чугуны могут иметь предел прочности при растяжении примерно от 100 до 400 МПа при практически нулевом значении относительного удлинения. На сжатие серые чугуны работают много лучше, чем на растяжение, т. к. при сжимающих нагрузках надрезающее действие пластинок графита оказывается незначительным.

Согласно ГОСТ 1412-70, различают 11 марок серого чугуна: СЧ00 (не испытывается); СЧ12-28; СЧ15-52; СЧ18-36; CЧ21-40; СЧ24-44; СЧ28-48; СЧ32-52; СЧЗ6-56; СЧ40-60; СЧ-44-64.

Первая цифра показывает предел прочности при растяжении, а вторая – предел прочности при изгибе в кГ/мм 2 .

Марка чугуна СЧ12-28 характеризуется ферритной металлической основой.

Марки чугуна СЧ15-52, СЧ18-36 – феррито-перлитной металлической основой.

Чугуны этих марок применяются для малоответственных деталей с небольшими нагрузками (строительные колонны, фундаментные плиты, кронштейны, маховики, зубчатые колеса).

Остальные марки имеют перлитную металлическую основу с пониженным содержанием углерода и кремния. Чугуны с перлитной основой применяют для ответственных деталей, работающих на износ при больших давлениях (станины станков, поршни, цилиндры, детали компрессорного, турбинного и металлургического оборудования). Серый чугун указанных марок обязательно модифицируется силикокальцием или ферросилицием, который содержит около 2% кальция, или другими присадками с целью предотвращения первичной кристаллизации по метастабильной диаграмме.

Высокопрочный чугун. Высокопрочный чугун получают путем модифицирования жидкого расплава магнием или церием. Магний и церий вводят в сравнительно небольших количествах: 0,1 – 0,2% к весу жидкого чугуна, подвергающегося модифицированию. Магний и церий способствуют образованию включений графита шаровидной формы (рис. 4.2, б , 4.3, б ).

Шаровидный графит может образовываться в процессе первичной кристаллизации, а также в процессе отжига белого модифицированного чугуна. Безусловно, наиболее желательно образование шаровидного графита непосредственно при первичной кристаллизации, так как в этом случае не требуется высокотемпературного отжига. Кроме того, образование графита в структуре при первичной кристаллизации резко уменьшает усадку сплава. А это в свою очередь существенно упрощает технологию литья.

Маркируются высокопрочные чугуны буквами ВЧ и последующими цифрами.

Первые две цифры марки показывают среднее значение предела прочности при растяжении в кг/мм 2 , вторые – относительное удлинение в процентах. Например, чугун марки ВЧ60-2 имеет предел прочности на растяжение σ = 600МПа; относительное удлинение δ = 2%.

По ГОСТ 7293-70 предусмотрено 9 марок высокопрочного чугуна.

Отливки этих чугунов используют в авто- и дизелестроении для коленвалов, крышек цилиндров; в тяжелом машиностроении – для деталей прокатных станов; в кузнечно-прессовом оборудовании – для траверс прессов, прокатных валков; в химической и нефтяной промышленности – для корпусов насосов, вентилей и т. д. Также их применяют и для деталей, работающих в подшипниках и других узлах трения при повышенных и высоких давлениях (до 1200 МПа).

Ковкий чугун. Ковкие чугуны получаются путем специального графитизирующего отжига (томление) белых доэвтектических чугунов, содержащих от 2,27 до 3,2% С.

Существенный недостаток процесса получения ковкого чугуна – длительность отжига, составляющая 70 – 80 ч. Для его ускорения применяют различные меры (модифицирование алюминием (реже бором, висмутом), повышение температуры первой стадии (но не выше 1080°С)).

В настоящее время разработан метод ускоренного отжига ковкого чугуна, заключающийся в том, что отливки из белого чугуна перед графитизирующим отжигом предварительно закаливаются, что способствует снижению длительности отжига до 30 – 60 ч.

График получения ковкого чугуна показан на рис. 4.6.

Рис. 4.6. Графики получения ковких чугунов

Для получения ковкого чугуна необходимо:

– отливки из малоуглеродистого белого чугуна, содержащего не более 2,8% углерода, медленно нагревать в течение 20 – 25 часов в нейтральной среде до температуры 950 – 1000°С и при этой температуре длительно (10 – 15 ч.) выдерживать (первая стадия графитизации);

– затем медленно охлаждать до температуры немного ниже эвтектоидного превращения (700 – 740°С в зависимости от состава чугуна и длительное время (30 часов) выдерживать при этой температуре (вторая стадия графитизации);

– вести охлаждение на воздухе.

При первой стадии графитизации цементит ледебурита и вторичный цементит распадаются с образованием аустенита и хлопьевидного графита по реакции:

Fe 3 C ® Fe γ (С) + С

Цементит = аустенит + графит

При охлаждении от первой до второй стадии графитизации скорость охлаждения должна обеспечивать выделение вторичного цементита из аустенита и его распад на аустенит и графит по вышеприведенной формуле.

При второй стадии графитизации цементит перлита распадается на феррит и графит по реакции:

Fe 3 C ® Fe α (С) + С

Цементит = феррит + графит

Структура после окончательной обработки будет состоять из феррита и хлопьевидного графита.

Продолжительность всей термической обработки составляет 70 – 80 часов.

Если при второй стадии графитизации выдержка для полного распада цементита перлита на феррит и графит будет недостаточной, то в этом случае получают феррито-перлитный ковкий чугун; если выдержки не будет совсем, получают перлитный ковкий чугун со структурой перлит и хлопьевидный графит.

Желательно, чтобы содержание углерода в ковком чугуне было низким, т. к. с увеличением содержания углерода увеличивается количество свободного графита после отжига чугуна и ухудшаются его свойства. Однако уменьшение содержания углерода повышает температуру плавления, создает трудности при отливке, повышает стоимость отливки и т. д.

Для получения перлитного ковкого чугуна иногда применяют ваграночный белый чугун с содержанием до 3,2% углерода. Отжиг при этом производят в обезуглероживающей (окислительной) среде с последующим охлаждением на воздухе. Такой отжиг обеспечивает значительное выгорание углерода.

Ковкие чугуны маркируются буквами КЧ с цифрами. Первые две цифры указывают предел прочности при растяжении в кг/мм 2 , вторые цифры – относительное удлинение в процентах.

По ГОСТ 1215-59 ковкие чугуны имеет следующие марки:

– ферритный чугун: КЧ37-12, КЧ35-10, КЧ33-8, КЧ30-6;

– феррито-перлитный и перлитный ковкий чугуны: КЧ45-6, КЧ50-4, КЧ56-4, КЧ60-3, КЧ63-2.

Отливки из ковкого чугуна хорошо сопротивляются ударам и вибрационным нагрузкам, хорошо обрабатываются резанием, обладают достаточной вязкостью.

Ковкий чугун используется в автомобильной, тракторной промышленности, сельскохозяйственном машиностроении, вагоно-, станкостроении для деталей высокой прочности, воспринимающих знакопеременные и ударные нагрузки, работающих в условиях повышенного износа. Широкое его применение обусловлено, прежде всего, хорошими литейными свойствами исходного белого чугуна, что позволяет получать тонкостенные отливки сложной формы. Ферритные ковкие чугуны идут на изготовление деталей, эксплуатируемых при высоких динамических и статических нагрузках (кратеры редукторов, ступицы, крюки, скобы) и для менее ответственных (гайки, глушители, фланцы, муфты). Из перлитного ковкого чугуна изготавливают звенья и ролики цепей конвейера, тормозные колодки и др.

Порядок выполнения работы

1. Изучите классификацию чугунов, их строение, маркировку и способы получения.

2. Исследуйте под микроскопом шлифы и указать, к какому виду чугунов относится каждый образец.

3. Определите условия получения изучаемой структуры.

4. Установите влияние каждой структурной составляющей на свойства чугуна.

5. Протравите шлифы и изучите микроструктуру под микроскопом, зарисовать, укажите структурные и фазовые составляющие.

6. Установите различие в свойствах рассмотренных структур.

7. Составьте сводную таблицу рассмотренных структур, полученные данные занесите в табл. 4.2.

8. Составьте отчет о проделанной работе.

При составлении отчета необходимо:

1) привести краткую классификацию чугунов;

2) дать определение белым, серым, высокопрочным и ковким чугунам;

3) начертить часть диаграммы Fe – Fe 3 C, которая относится к области чугунов;

4) зарисовать все просмотренные структуры чугунов до и после травления с указанием названий структурных составляющих и класса чугунов;

5) указать химический состав белых чугунов и их положение на диаграмме;

6) описать способы получения, свойства и область применения каждого вида чугунов; указать маркировку.

Данные по проделанной работе свести в табл. 4.2.

Таблица 4.2

Контрольные вопросы

1. Какие преимущества чугунов перед сталью?

2. Как классифицируются чугуны?

3. Чем характеризуются структура и свойства чугуна?

4. Как влияет форма графита на свойства чугунов?

5. Сколько углерода содержит чугун?

6. В каких видах может находиться углерод в чугунах?

7. В каких чугунах весь углерод находится в химически связанном состоянии?

8. В каких чугунах весь углерод или его часть находится в виде графита?

9. Способы получения, свойства и применение белых чугунов.

10. Как получают белый чугун?

11. Сколько графита в белом чугуне?

12. Какие элементы способствуют отбелу?

13. Какие элементы способствуют графитизации?

14. Какая структура доэвтектического белого чугуна?

15. Какая структура эвтектического белого чугуна?

16. Какова структура заэвтектического белого чугуна?

17. Что такое ледебурит?

18. Что определяет прочность серого чугуна?

19. Как получают серый чугун?

20. Какова структура металлической основы серых чугунов?

21. Хорошо ли куется ковкий чугун?

22. Как получают ковкий чугун?

23. Какие процессы идут на первой стадии графитизации (получение ковких чугунов)?

24. Какие процессы идут на второй стадии графитизации (получение ковких чугунов)?

25. Какова форма графита в ковких чугунах?

26. Структура ковкого чугуна:

27. Как получают высокопрочный чугун?

28. Структура высокопрочного чугуна:

29. Какова форма графита в высокопрочных чугунах?

30. Что такое модифицирование и с какой целью его применяют?

31. Какова форма графита в серых чугунах?

32. Структура серого чугуна

33. Маркировка серых, высокопрочных и ковких чугунов.

34. Что обозначают цифра в марке чугуна СЧ15?

35. Что обозначает цифра в марке чугуна ВЧ60?

36. Что обозначает цифра 30 в марке чугуна КЧ 30-6?

37. Что обозначает цифра 6 в марке чугуна КЧ 30-6?


Буква А в середине марочного обозначения указывает на наличие азота, спе­циально введенного в сталь.

Буква А в начале марочного обозначения указывает на то, что это Автоматная сталь, предназначенная для изготовления деталей массового производства на станках-автоматах (AI2, А30, А40Г – сернистые; ACI4, АС40, АС35Г2 – свинецсодержащие; А35Е, А40ХВ – сернистоселенистые; АЦ20, АЦ40Г – кальцийсодержащие). Цифрами, указывается среднее содержание углерода в сотых долях процента.

Не следует путать с закаливаемостью, которая характеризуется максимальным значением твердости, приобретенной сталью в результате закалки. Закаливаемость зависит главным образом от содержания углерода (см. рис. 6 лабораторной работы № 8).


Похожая информация.


Структура и свойства чугунов.

Чугунами называют железоуглеродистые сплавы, содержащие более 2,14% углерода. В машиностроении чугун является одним из основных литейных материалов, что объясняется прежде всего его хорошими литейными и прочностными свойствами. Он не подвергается обработке давлением. Главным фактором, определяющим свойства, а, следователь­но, и область применения чугуна, является его структура, которая может быть разнообразной.

По структуре чугуны делят на белые,серые, ковкие и высокопрочные.

9.1. Белые чугуны.

Белым называется чугун, в котором весь углерод находится в химически связанном состоянии в виде цементита Fe 3 C, который придает излому чугуна белый блестящий цвет.

Фазовые превращения в этих чугунах протекают согласно метастабильной диаграмме Fе - Fe 3 С (см. рис.23). По структуре белые чугуны делятся на:

а) доэвтектические, содержащие от 2,14 до 4,3 С. Они состоят из перлита, ледебурита и вторичного цементита, выделяющегося из зерен аустенита в интервале температур от 1147° (линия ЕС) до 727° (линия SК). Вторичный цементит сливается с цементитом ледебурита и может быть не виден на микрошлифе как самостоятельная структурная составляющая (рис. 51,а);

б) эвтектические, содержащий 4,3% С. Он состоит из эвтектики -ледебурита, представляющего собой механическую смесь цементита и перлита (рис. 51,б);

В) заэвтектические, содержащие от 4,3% до 6,67% С. Они состоят из первичного цементита, выделяющегося в виде крупных пластин и ледебурита (рис. 51, в).

Рис. 51.Структура белого чугуна: а) доэвтектического б) эвтектического в) заэвтектического

В микроструктуре белого чугуна содержится много цементита, поэ­тому он очень тверд и хрупок, но хорошо сопротивляется износу. Он почти не поддается обработке резанием (за исключением абразивного), поэтому белые чугуны не находят непосредственного применения в машиностроении, их используют редко, только для изготовления дета­лей, работающих в условиях повышенного абразивного изнашивания (детали гидромашин, пескометов и др.). Будучи главным продуктом доменной плавки, этот чугун используется вметаллургии для передела в сталь (передельный чугун). В незначительном количестве белый чугун применяется также для получения ковкого чугуна.

9.2. Серые чугуны.

Серым называется чугун, в котором углерод находится в виде гра- фита, имеющего форму слегка изогнутых пластин или чешуек, или разветвленных розеток с пластинчатыми лепестками. Вследствие большого количества графита в структуре такой чугун в изломе имеет серый цвет.

Кремний способствует процессу графитизации, уменьшает усадку, кремний входит в состав феррита, образуя с α-железом твердый раствор замещения.

Марганец увеличивает склонность чугуна к сохранению цементита, а следовательно, и увеличивает твердость чугуна.

Сера - вредная примесь чугунов, она повышает их твердость и хрупкость в 5-6 раз больше, чемMn и значительно ухудшает литейные свойства.

Фосфор в небольших количествах в чугунах является полезной примесью (в отличие от сталей), улучшает литейные свойства серого чу- гуна, так как фосфор образует эвтектику Fe+Fe 2 P, плавящуюся при тем- пературе 983°С, что ценно для производства тонкостенного дутья. Химический состав серых чугунов: 2,5…4% С; 1,0…4,8% Si; 0,5…0,7% Mn; до 0,12% S; 0,2…0,5% P.

По структуре металлической основы серые чугуны подразделяют в основном на следующие группы;

1. Перлитные. Структура П+ПГ (пластинчатый графит), металлическая основа - П, а количество связанного углерода (Fe 3 C) равно эвтектоидной концентрации 0,8% (рис. 52, а).

2. Ферритно-перлитные. Структура Ф +П+ПГ, металлическая основа их состоит из Ф + П, а количество Fe 3 C меньше эвтектоидной концентрации (рис. 52, б).

3. Ферритные. Структура Ф + ПГ. Основа их состоит из Ф, а Fe 3 C=0 (рис. 52, в).

Рис.52.Структура серого чугуна: а)перлитного б) ферритно-перлитного в)ферритного

Механические свойства чугуна зависит от свойства металлической основы, количества и размеров графитных включений. При конструиро­вании деталей машин следует учитывать, что серые чугуны работают на сжатие лучше, чем на растяжение. Они мало чувствительны к надрезам при циклическом нагружении, хорошо поглощают колебания при вибрациях, обладают высокими антифрикционными свойствами из-за смазывающей способности графита. Серые чугуны хорошо обрабатываются резанием, дешевы и просты в изготовлении. Наряду с этими положительными свойствами они имеют сравнительно невысокую прочность и чрезвычайно низкую пластичность.

Марка серого чугуна состоит из букв СЧ (серый чугун) и цифры, показывающей уменьшенное в 10 раз значение (в мегапаскалях) временного сопротивления при растяжении (табл.7).

Прочность чугуна существенно зависит от толщины стенки отливки. Указанное в марке значение σ в соответствует отливкам с толщиной стенки 15 мм. При увеличении толщины стенки от 15 до 150 мм прочность и твердость чугуна уменьшаются почти в два раза.

Графит, ухудшая механические свойства, в то же время придает чугунам ряд ценных свойств. Он измельчает стружку при обработке ре- занием, оказывает смягчающее действие и, следовательно, повышает из- носостойкость чугунов, придает им демпфирующую способность. Кроме того, пластинчатый графит обеспечивает малую чувствительность чугу- нов к дефектам поверхности. Благодаря этому сопротивления усталости чугунных и стальных деталей соизмеримы.

Согласно ГОСТ 1412-85 отливки изготавливают из серого чугуна следующих марок: СЧ10, СЧ15, СЧ18, СЧ20, СЧ25, СЧ30, СЧ35. Цифры в обозначении марки соответствуют минимальному пределу прочности при растяжении (σ в, кгс/мм 2). Чугун СЧ10 - ферритный, а начиная с СЧ25 и более - перлитные, промежуточные - ферритно-перлитные.

Из ферритных чугунов изготавливают в основном неответственные детали, к которым предъявляются главным образом требования хорошей обрабатываемости резанием, а не прочности, например, плиты, грузы, корыта, крышки, кожухи и др.

Из ферритно-перлитных чугунов в автомобилестроении изготавливают картеры, тормозные барабаны, крышки, поршни, поршневые кольца, крупные шкивы, зубчатые колеса и др.

Из перлитных - блоки цилиндров, гильзы, маховики и др. В станкостроении серый чугун является основным конструкционным материалом (станины станков, столы и верхние салазки, шпиндельные бабки, колонки, каретки и т.д.), К износостойким относится отбеленный серый чугун(0Ч), имеющий тонкий поверхностный слой со структурой белого чугуна. применяется для изготовления отливок прокатных валков, вагонных колёс и т.д.

Ковкие чугуны.

Название "ковкий чугун" является условным, поскольку изделия из него, как и из любого другого чугуна изготавливают не ковкой, а литьем. Название "ковкий" этот чугун получил вследствие более высоких, по сравнению с серыми чугунами пластических свойств.

Принципиальная схема технологии получения деталей из ковкого чугуна состоит из двух операций. Сначала путем отливки из белого доэвтектического чугуна получают детали (рекомендуемый химический состав заливаемого в формы сплава: 2,4...2,9% С; 1,0...1,6% Si ; 0,3...1,0% Мn ; ≤ 0,1% S; ≤ 0,2% Р, затем полученные отливки подвергают специальному графитизирующему отжигу (томлению). Отжиг состоит обычно из двух стадий (рис. 53).

Вначале отливки из белого чугуна (чаще упакованные в ящики с песком) медленно нагревают в течение 20...25 ч до температуры 950...1050°С. И при этой же температуре длительно их выдерживают (в течение 10...15 ч). В этот период протекает первая стадия графитизации, т.е. распад цементита, входящего в состав ледебурита(А +Fe 3 С), и установление стабильного равновесия аустенит + графит.

В результате распада цементита образуется хлопьевидный графит (углерод отжига).

Металлическая основа чугуна формируется на второй стадии отжига при эвтектоидном превращении. В случае непрерывного охлаждения отливки (на воздухе) в области эвтектоидной (727°С) температуры аустенит распадается на перлит и процесс графитизации не успеет охватить цементит перлита. Чугун принимает структуру: перлит пластинчатый + хлопьевидный графит (ХГ) Он обладает высокими твердостью, прочностью и небольшой пластичностью (НВ 235...305, σ в = 650... 680 МПа, δ = 3,0...15%). Для повышения пластичности при сохранении достаточно высокой прочности проводится непродолжительная (2...4 ч) изотермическая выдержка чугуна или замедленное охлаждение при температурах 690...650°С. Это вторая стадия отжига, представляющая собой в данном случае отжиг на зернистый перлит.

Рис. 53. График отжига белого чугуна на ковкий

В машиностроении широко применяется ферритный ковкий чугун, характеризующийся высокой пластичностью (δ = 10...12%) и относи -тельно низкой прочностью (σ в = 370...300 МПа). Ферритная основа чугуна образуется при очень медленном прохождении интервала 760... 720° С или в процессе изотермической выдержки при 720...700°С. Здесь аустенит и цементит, в том числе и цементит перлита, если перлит успел обрадоваться, распадается на феррит + хлопьевидный графит. Хлопьевидная форма графита является основной причиной более высокой прочности и пластичности ковкого чугуне по сравнению с серым чугуном (см. табл.7).

Продолжительность отжига в целом составляет 48...96 ч (длительность II стадии примерно в 1,5 раза больше, чем I). Для сокращения продолжительности отжига в расплав перед его разливкой по формам (вводится (модифицируют) алюминий (реже бор, висмут и др.), что создает дополнительные искусственные центры образования графита. Согласно ГОСТ 1215-79 выпускают следующие марки ковких чугунов КЧ30-8 , КЧ35-10, КЧ37-12, КЧ45-7, КЧ50-5, КЧ55-4, КЧ60-3, КЧ65-3, КЧ70-2, КЧ80-1,5. Первые две цифры соответствуют минимальному пределу

прочности при растяжении (σ в,кгс/мм 2); цифры после тире - относительное удлинение (δ , % )

Ковкие чугуны применяются для деталей, работающих при ударных вибрационных нагрузках (ступицы, тормозные колодки, коленчатые валы, крюки, картеры редукторов и др.).

Основным недостатком получения КЧ является длительный отжиг отливок и ограничение толщины их стенок (до 50 мм). В пассивных деталях в результате замедленного охлаждения при кристаллизации возникает пластинчатый графит (вместо хлопьевидного), который снижает прочность и пластичность чугуна.

Таблица 7. Механические свойства чугунов.

Серые чугуны (ГОСТ 1412 - 85)

СЧ 10 - - -190 Ф
СЧ 15 - - 163-210 Ф
СЧ 25 - - 180-245 Ф+П
СЧ 35 - - 220-275 П

Высокопрочные чугуны (ГОСТ 7293 - 85)

ВЧ 35 140-170 Ф
ВЧ 45 140-225 Ф+П
ВЧ 60 192-227 Ф+П
ВЧ 80 248-351 П
ВЧ 100 270-360 Б

Ковкие чугуны (ГОСТ 1215 – 79

КЧ 30 – 6 - 100-163 Ф+до10%П
КЧ 35 – 8 - 100-163
КЧ37 – 12 - 110-163
КЧ45 – 7 - 150-207
КЧ 60 - 3 - 200-269 П+до20%Ф
КЧ 80-1,5 - 1,5 270-320

9.4. Высокопрочные чугуны.

Высокопрочный чугун получают при модифицировании (микролегировании жидкого чугуна магнием (0,1...0,5%) или церием (0,2...0,3%). При этом под действием магния графит в процессе кристаллизации принимает не пластинчатую, а шаровидную форму. Микроструктура модифицированного чугуна на ферритной и на перлитной основе приведена на рис. 54, а, б.

Рис. 54. Структура высокопрочного чугуна: а)ферритного б) перлитного

Основной причиной высоких механических свойств высокопрочного чугуна (табл. 7) является шаровидная форма графита. Шаровидный графит, имеющий минимальную поверхность при данном объеме, значительно меньше ослабляет металлическую основу чугуна, чем пластинчатый графит. В отличие от последнего он не является активным концентратором напряжений.

Согласно ГОСТ 7293-85, отливки изготавливают из высокопрочного чугуна следующих марок: ВЧ35, ВЧ40, ВЧ45, ВЧ50, ВЧ60, ВЧ70, ВЧ80, ВЧ100 (цифры в обозначении соответствуют минимальному пределу прочности при растяжении σ в, кгс/мм 2)

Высокопрочный чугун имеет высокие механические характеристики, обладает хорошими литейными и технологическими свойствами. Он применяется как новый материал и как заменитель стали, ковкого и серого чугуна с пластинчатым графитом. По сравнению со сталью обладает большей износостойкостью, лучшими антифрикционными и антикоррозионными свойствами, лучшей обрабатываемостью резанием, Вследствие меньшей плотности отливки легче стальных на 8...10%. Из высокопрочного чугуна, в отличие от ковкого, можно отливать детали любого сечения, массы и размеров.

Области применения: в станкостроении - суппорты, резцедержатели, тяжелые планшайбы, шпиндели, рычаги и др.; для прокатного и кузнечно-прессового оборудования - прокатные валки, станины прокатных станов и ковочных молотов, шаботы, траверсы прессов; для других видов оборудования - барабаны тельферов экскаваторов, коленчатые валы и т.д.

9.5. Легированные чугуны.

Требования к легированным чугунам для отливок с повышенной жаростойкостью, коррозионной стойкостью, износостойкостью или жаропрочностью регламентированы ГОСТ 7769-82. Марки легированных чугунов и их свойства приведены в табл. 8.

Легированные чугуны подвергаются термической обработке для обеспечения необходимых свойств и структуры.

Важным свойством легированных чугунов является сопротивление износу.

В качестве антифрикционных используются чугуны по ГОСТ 1585-85. Они предназначены для изготовления деталей, работающих в узлах трения со смазкой. Стандарт определяет марки антифрикционных чугунов, их химический состав, характеристики, назначение, форму, размер и распределение графита, дисперсность перлита, характер распределения фосфидной эвтектики, твердость и предельные режимы эксплуатации деталей из этих чугунов. Основой их является железо, постоянные компоненты, %: 2,2-4,3 С; 0,5-4,0 Si; 0,3-12,5 Mn. Допускаются примеси, % : 0,1-1 Р; 0,03-0,2 S.

Марки антифрикционных чугунов, их характеристики и на значение представлены в табл. 9.

Таблица 8.

Марки и свойства легированных чугунов(ГОСТ 7769-82)

Марка чугуна Свойства
ЧХ1, ЧХ2, ЧХ3 Чугуны, обладающие повышенной коррозионной стойкостью в газовой, воздушной и щелочной средах в условиях трения и износа, жаростойкие в воздушной среде, выдерживают температуру от 500 до 700˚. предназначены дл изготовления деталей металлургического производства, кокилей стеклоформ, деталей химического оборудования и др.
ЧХ3Т, ЧХ9Н5, ЧХ22, ЧХ16М2, ЧХ28Д2 Чугуны, обладающие повышенной стойкостью против абразивного износа и истирания
ЧХ22С Этот чугун характеризуется повышенной коррозионной стойкостью при температуре 1000˚С
ЧС13, ЧС15, ЧС17, ЧС15МА, ЧС17М3 Устойчивы к воздействию концентрированных и разбавленных кислот, растворов щелочей, солей
ЧГ6С3Ш, ЧГ7Х4 Чугуны, обладающие высокой стойкостью в абразивной среде
ЧГ8Д3 Немагнитный износостойкий чугун
ЧНХТ, ЧНХМД, ЧН2Х, ЧНМШ Чугуны с высокими механическими свойствами, хорошо сопротивляются износу и коррозии
ЧН15Д3Ш, ЧН19Х3Ш, ЧН11Г7Ш, ЧН20Д2Ш, ЧН15Д7 Чугуны, обладающие высокими механическими свойствами, высокой коррозионной и эрозионной стойкостью в щелочах, слабых растворах кислот, в морской воде. Чугун ЧН20Д2Ш может быть пластически деформирован в холодном состоянии

Таблица 9.

Марки антифрикционных чугунов, их свойства и назначение

(ГОСТ 1585-85)

Марка чугуна Свойства и назначение
АЧС-1 Перлитный чугун, легированный хромом (0,2-0,5 %) и медью (0,8-1,6%); предназначен для изготовления деталей, рабо­тающих в паре с закаленным или нормализованным валом
АЧС-2 Перлитный чугун, легированный хромом (0,2-0,5%), нике­лем (0,2-0,5%), титаном (0,03-0,1%) и медью (0,2-0,5%); назначение - такое же, как и чугуна марки АСЧ-1
АЧС-3 Перлитно-ферритный чугун, легированный титаном (0,03-0,1 %) и медью (0,2-0,5 %); детали из такого чугуна могут работать в паре, как с "сырым", так и с термически обработанным валом
АЧС-4 Перлитный чугун, легированный сурьмой (0,04-0,4%); ис­пользуется для изготовления деталей, работающих в паре с закаленным или нормализованным валом
АЧС-5 Аустенитный чугун, легированный марганцем (7,5-12,5 %) и алюминием (0,4-0,8%); из этого чугуна изготавливают дета­ли, работающие в особо нагруженных узлах трения в паре с закаленным или нормализованным валом
АЧС-6 Перлитный пористый чугун, легированный свинцом (0,5-1,0%) и фосфором (0,5-1,0%); рекомендуется для производства де­талей, работающих в узлах трения с температурой до 300 ˚ С в паре с "сырым" валом
АЧВ-1 Перлитный чугун с шаровидным графитом; детали из такого чугуна могут работать в узлах трения с повышенными окруж­ными скоростями в паре с закаленным или нормализованным валом
АЧВ-2 Перлитно-ферритный чугун с шаровидным графитом; изготов­ленные из этого чугуна детали хорошо работают в условиях тре­ния с повышенными окружными скоростями в паре с "сырым" валом
АЧК-1 Перлитный чугун с хлопьевидным графитом, легированный медью (1,0-1,5%); предназначен для изготовления деталей, работающих в паре с термически обработанным валом
АЧК-2 Ферритно-перлитный чугун с хлопьевидным графитом; детали из этого чугуна работают в паре с "сырым" валом

Буквы в обозначениях марок чугунов означают: АЧ - анти­фрикционный чугун, С - серый чугун с пластинчатым графитом, В - высокопрочный чугун с шаровидным графитом, К - ковкий чугун с хлопьевидным графитом. Твердость отливок из анти­фрикционных чугунов (от 100 до 290 НВ) зависит от содержания элементов и условий термической обработки.

Предельные режимы работы деталей из этих чугунов в узлах трения: удельное давление (50 - 300) 10 4 Па (5-300 кгс/см 2), ок­ружная скорость 0,3-10 м/с.