Включает в себя такие понятия, как поступление, движение воды в растениях и испарение ее.

Вода необходима растениям

Передвигается вода в растениях по клеткам коровой паренхимы до центрального цилиндра корня, затем по проводящей системе до листовой паренхимы и, наконец, по клеткам листовой паренхимы. На первом участке пути вода передвигается благодаря повышению сосущей силы клеток корня.


Движение воды от корневого волоска в сторону центральных сосудов

Этот отрезок пути очень небольшой (доли миллиметра), но передвижение воды по этому участку очень затруднено, так как воде приходится преодолевать сопротивление слоев живой протоплазмы . Это сопротивление примерно равно 1 атм на 1 мм пути, поэтому передвижение воды по живым клеткам на более значительные расстояния не обеспечивало бы потребности растения в воде.

Действительно, растения , у которых не развита проводящая система , например мхи, (подробнее: ) имеют незначительные размеры и приспособлены к жизни только во влажных условиях. У наземных растений в процессе эволюции образовалась проводящая ткань, которая устанавливает сообщение между всасывающими воду корнями и испаряющими воду листьями.

Проводящая воду ткань

Проводящая воду ткань состоит из сосудов, или трахей , и трахеидов ; она начинается в центральном цилиндре корня, проходит через весь корень и стебель и заканчивается в виде тончайших разветвлений - жилок, пронизывающих всю листовую паренхиму.

Сосуды представляют собой мертвые трубки, образовавшиеся из живых клеток. В сосудах сохраняются поперечные перегородки на разном расстоянии (от нескольких миллиметров до метра в зависимости от вида растения) одна от другой.

Исчезновение перегородок даже на небольшом расстоянии в тысячи раз ускоряет передвижение воды. Трахеиды это длинные мертвые клетки с заостренными концами. При образовании сосудов и трахеид происходит утолщение и одревеснение их оболочек, вследствие чего они не сдавливаются под давлением окружающих их живых паренхимных клеток.


Движение воды в древесных растениях

Одревеснение, однако, никогда не бывает сплошным: на стенке сосудов остаются тонкие места - поры, по которым вода может перемещаться не только вверх по сосудам, но и в радиальном направлении.

Подъем воды по сосудам

Подъем воды по сосудам можно доказать следующим опытом. Если у срезанной и поставленной в воду ветки снять кольцо коры выше уровня воды, листья ее не завянут, так как сосуды расположены в древесине.

Движение воды по сосудам чаще всего направлено снизу вверх и называется поэтому восходящим током .


Последний отрезок пути водного тока по листовой паренхиме идет по живым
клеткам . Вода передвигается осмотическим путем по клеткам мезофилла листа до последних клеток, граничащих с межклеточниками . Этот отрезок пути, так же как и первый, очень короткий.

Если срезанную ветку растения герметически закрепить в стеклянной трубке, заполненной водой, и нижний конец ее опустить в сосуд со ртутью, то при испарении веткой воды ртуть в трубке будет подниматься.

Из этого опыта ясно, что передвижение воды по растению обусловлено главным образом транспирацией , (подробнее: ), а не только корневым давлением.

При испарении воды с поверхности листьев в клетках возникает сосущая сила. Величина ее тем больше, чем меньше воды остается в клетках листа. Эта возникающая сосущая сила поддерживает постоянное передвижение воды в растении.


Транспорт веществ в растениях

Силы, приводящие воду в движение

Таким образом, силы, приводящие воду в движение , находятся по концам проводящей системы: нагнетающий воду корень, работа которого получила название нижнего концевого двигателя , и сила присасывания воды листьями - верхний концевой двигатель .

Оба двигателя действуют в одном направлении и могут заменять и дополнять друг друга. Во время сильной инсоляции летом и при, засухе водоснабжение растения идет за счет присасывающего действия транспирации.

Корневое давление

Когда же почва богата водой, а воздух водяными парами, подъем воды обеспечивается силой корневого давления, (подробнее: ). Следовательно, в зависимости от условий внешней среды главная роль принадлежит то одному, то другому концевому двигателю.

Водные нити не рвутся под влиянием своей тяжести, несмотря на то, что при сильной они находятся в состоянии натяжения. Это объясняется силой сцепления молекул воды, достигающей 300-350 атм, а так как в сосудах нет воздуха, то целостность водного тока не прерывается.

Скорость водного тока

Скорость водного тока зависит от строения проводящих воду элементов. Вода быстрее передвигается по сосудам, причем скорость движения ее зависит от диаметра сосудов: чем он меньше, тем медленнее будет передвигаться вода.

Движение воды в растениях происходит благодаря работе двух концевых двигателей, верхнего и нижнего, и сил сцепления, обеспечивающих целостность водных нитей.


Вода поступает в растение из почвы через корневые волоски и по сосудам разносится по всей его надземной части. В вакуолях растительных клеток растворены различные вещества. Частицы этих веществ давят на протоплазму, которая хорошо пропускает воду, но препятствует прохождению через нее растворенных в воде частиц. Давление растворенных веществ на протоплазму называется осмотическим давлением. Вода, поглощенная растворенными веществами, растягивает до известного предела эластичную оболочку клетки. Как только растворенных веществ становится меньше в растворе, содержание воды уменьшается, оболочка сокращается и принимает минимальный размер. Осмотическое давление постоянно поддерживает растительную ткань в напряженном состоянии, и лишь при большой потере воды, при завядании, это напряжение - тургор - в растении прекращается.

Когда осмотическое давление уравновешено растянувшейся оболочкой, вода не может поступать в клетку. Но стоит клетке потерять часть воды, как оболочка сокращается, находящийся в клетке клеточный сок становится более концентрированным, а вода начинает поступать в клетку, пока оболочка снова не растянется и не уравновесит осмотическое давление. Чем больше воды потеряло растение, тем с большей силой вода поступает в клетки. Осмотическое давление в растительных клетках довольно велико, и его измеряют, подобно давлению в паровых котлах, атмосферами. Силу, с которой растение всасывает воду, - сосущую силу - также выражают в атмосферах. Сосущая сила у растений часто достигает 15 атмосфер и выше.

Растение непрерывно испаряет воду через находящиеся в листьях устьица. Устьица могут раскрываться и закрываться, образовывать то широкую, то узкую щель. На свету устьица раскрываются, а в темноте и при слишком большой потере воды закрываются. В зависимости от этого испарение воды идет то - интенсивно, то почти совсем прекращается.
Если срезать растение под корень, из пенька начинает сочиться сок. Это показывает, что корень и сам нагнетает воду в стебель. Следовательно, поступление воды в растение зависит не только от испарения воды через листья, но и от корневого давления. Оно перегоняет воду из живых клеток корня в полые трубки омертвевших сосудов. Так как в клетках этих сосудов нет живой протоплазмы, вода беспрепятственно движется по ним к листьям, где испаряется через устьица.

Испарение очень важно для растения. С передвигающейся водой разносятся по всему растению поглощенные корнем минеральные вещества.
Испарение снижает температуру тела растения и тем самым предохраняет его от перегрева. Растение усваивает лишь 2-3 части поглощенной им из почвы воды, остальные 997 - 998 частей испаряются в атмосферу. Чтобы образовать один грамм сухого вещества, растение в нашем климате испаряет от 300 г до килограмма воды.

Вода, поступившая в клетки корня, под влиянием разности водных потенциалов, которые возникают благодаря транспирации и корневого давления, передвигается до проводящих элементов ксилемы. Согласно современным представлениям, вода в корневой системе передвигается не только по живым клеткам. Еще в 1932г. немецкий физиолог Мюнх развил представление о существовании в корневой системе двух относительно независимых друг от друга объемов, по которым передвигается вода, - апопласта и симпласта.

Апопласт - это свободное пространство корня, в которое входят межклетные промежутки, оболочки клеток, а также сосуды ксилемы. Симпласт - это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочисленным плазмодесмам, соединяющим между собой протопласт отдельных клеток, симпласт представляет единую систему. Апопласт не непрерывен, а разделен на два объема. Первая часть апопласта расположена в коре корня до клеток эндодермы, вторая - по другую сторону клеток эндодермы и включает в себя сосуды ксилемы. Клетки эндодермы благодаря пояскам. Каспари представляют как бы барьер для передвижения воды по свободному пространству (межклетникам и клеточным оболочкам). Передвижение воды по коре корня идет главным образом по апопласту, где она встречает меньшее сопротивление, и лишь частично по симпласту.

Однако, для того, чтобы попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мембрану клеток эндодермы. Таким образом, мы имеем дело как бы с осмометром, у которого полупроницаемая мембрана расположена в клетках эндодермы. Вода устремляется через эту мембрану в сторону меньшего (более отрицательного) водного потенциала. Далее вода поступает в сосуды ксилемы. Как уже упоминалось, по вопросу о причинах, вызывающих секрецию воды в сосуды ксилемы, имеются различные суждения. Согласно гипотезе Крафтса, это следствие выброса солей в сосуды ксилемы, в результате чего там создается повышенная их концентрация, и водный потенциал становится более отрицательным. Предполагается, что в результате активного (с затратой энергии) поступления соли накапливаются в клетках корня. Однако интенсивность дыхания в клетках, окружающих сосуды ксилемы (перицикла), очень низкая, и они не удерживают соли, которые благодаря этому десорбируются в сосуды. Дальнейшее передвижение воды идет по сосудистой системе корня, стебля и листа. Проводящие элементы ксилемы состоят из сосудов и трахеид.

Опыты с кольцеванием показали, что восходящий ток воды по растению движется в основном по ксилеме. В проводящих элементах ксилемы вода встречает незначительное сопротивление, что, естественно, облегчает передвижение воды на большие расстояния. Правда, некоторое количество воды передвигается и вне сосудистой системы. Однако по сравнению с ксилемой сопротивление движению воды других тканей значительно больше (не менее чем на три порядка). Это приводит к тому, что вне ксилемы движется всего от 1 до 10% общего потока воды. Из сосудов стебля вода попадает в сосуды листа. Вода движется из стебля через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся все более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа. Именно поэтому густота жилкования листа считается одним из важнейших признаков ксероморфной структуры - отличительной чертой растений, устойчивых к засухе.

Иногда мелких ответвлений жилок листа так много, что они подводят воду почти к каждой клетке. Вся вода в клетке находится в равновесном состоянии. Иначе говоря, в смысле насыщенности водой имеется равновесие между вакуолью, цитоплазмой и клеточной оболочкой, их водные потенциалы равны. В связи с этим, как только в силу процесса транспирации возникает ненасыщенность водой клеточных стенок паренхимных клеток, она сейчас же передается внутрь клетки, водный потенциал которой падает. Вода передвигается от клетки к клетке благодаря градиенту водного потенциала. По-видимому, передвижение воды от клетки к клетке в листовой паренхиме идет не по симпласту, а в основном по клеточным стенкам, где сопротивление значительно меньше.

По сосудам вода движется благодаря создающемуся в силу транспирации градиенту водного потенциала, градиенту свободной энергии (от системы с большей свободой энергии к системе с меньшей). Можно привести примерное распределение водных потенциалов, которое и вызывает передвижение воды: водный потенциал почвы (0,5 бара), корня (2 бара), стебля (5 бар), листьев (15 бар), воздуха при относительной влажности 50% (1000 бар).

Однако ни один всасывающий насос не может поднять воду на высоту больше 10м. Между тем есть деревья, у которых вода поднимается на высоту более 100м. Объяснение этому дает теория сцепления, выдвинутая русским ученым Е. Ф. Вотчалом и английским физиологом Е. Диксоном. Для лучшего понимания рассмотрим следующий опыт. В чашку с ртутью помещают заполненную водой трубку, которая заканчивается воронкой из пористого фарфора. Вся система лишена пузырьков воздуха. По мере испарения воды ртуть поднимается по трубке. При этом высота подъема ртути превышает 760мм. Это объясняется наличием сил сцепления между молекулами воды и ртути, которые в полной мере проявляются при отсутствии воздуха. Сходное положение, только еще более ярко выраженное, имеется в сосудах у растений.

Вся вода в растении представляет единую взаимосвязанную систему. Поскольку между молекулами воды имеются силы сцепления (когезия), вода поднимается на высоту, значительно большую 10м. Расчеты показали, что благодаря наличию сродства между молекулами воды силы сцепления достигают величины - 30 бар. Это такая сила, которая позволяет поднять воду на высоту, равную 120м, без разрыва водных нитей, что примерно и составляет максимальную высоту деревьев. 120м, без разрыва водных нитей, что примерно и составляет максимальную высоту деревьев. Силы сцепления существуют и между водой и стенками сосудов (адгезия). Стенки проводящих элементов ксилемы эластичны. В силу этих двух обстоятельств даже при недостатке воды связь между молекулами воды и стенками сосудов не нарушается. Это подтверждается исследованиями по изменению толщины стебля травянистых растений. Определения показали, что в полуденные часы толщина стебля растений уменьшается. Если перерезать стебель, то сосуды сразу расширяются и воздух врывается в них. Из этого опыта видно, что при сильном испарении сосуды сужаются и это приводит к появлению отрицательного давления. Благодаря этому

Ψ в.сосуда = Ψ осм.+ Ψ давл.

Степень натяжения водных нитей в сосудах зависит от соотношения процессов поглощения и испарения воды. Все это позволяет растительному организму поддерживать единую водную систему и не обязательно восполнять каждую каплю испаряемой воды. Таким образом, при нормальном водоснабжении создается непрерывность воды в почве, растении и атмосфере. В том случае, если в отдельные членики сосудов попадает воздух, они, по-видимому, выключаются из общего тока проведения воды. Таков путь воды по растению и его основные движущие силы. Современные методы исследования позволяют определить скорость передвижения воды по растению. Скорость передвижения воды определяется разностью водных потенциалов в начале и конце пути, а также сопротивлением, которое она встречает. Согласно полученным данным, скорость движения воды в течение суток изменяется. В дневные часы она значительно больше. При этом разные виды растений отличаются по скорости передвижения воды. Если скорость передвижения у хвойных пород обычно 0,5-1,2 м/ч, то у лиственных она значительно выше. У дуба, например, скорость передвижения составляет 27 - 40 м/ч. Скорость передвижения воды мало зависит от напряженности обмена веществ. Изменение температуры, введение метаболических ингибиторов не влияют на передвижение воды. Вместе с тем этот процесс, как и следовало ожидать, очень сильно зависит от скорости транспирации и от диаметра водопроводящих сосудов. В более широких сосудах вода встречает меньшее сопротивление. Однако надо учитывать, что в более широкие сосуды скорее могут попасть пузырьки воздуха или произойти какие-либо иные нарушения тока воды.



§ 1 Особенности корневого строения

Одной из главных функций корня растения является всасывание из почвы воды и растворенных в ней минеральных веществ. В связи с этой функций корень имеет особенности как внешнего, так и внутреннего строения. Рассмотрим подробнее. Все типы корней в корневой системе: главные, боковые, придаточные имеют сходство в строении.

Все корни ветвятся, нарастают верхушкой и на них никогда не встречаются листья. Верхушка корня защищена колпачком из нескольких слоев мертвых клеток - корневым чехликом. Его функция состоит в защите зоны деления корня от механических повреждений. Клетки чехлика постоянно обновляются за счёт деления, это клетки образовательной ткани - меристемы. Некоторые клетки меристемы добавляют новые слои как к корню, так и к корневому чехлику.

За зоной деления расположена зона растяжения, где клетки уже не нарастают, а только вытягиваются. В этой зоне корень удлиняется и проталкивает зону деления вперед. Далее от зоны растяжения находится зона всасывания. Она представляет собой участок корня, густо покрытый корневыми волосками. Корневой волосок - это вырост клетки эпидермы корня, то есть покровного слоя. Данные клетки увеличивают поверхность всасывания почвенных растворов. Зона всасывания может постепенно перемещаться по корню: на переднем крае этой зоны появляются новые корневые волоски, а на заднем - постепенно отмирают старые. В результате этого процесса зона всасывания медленно продвигается вглубь почвы. На корне также выделяют еще две зоны: ветвления, где образуются боковые корни, и зону проведения - расположенную выше. Зона проведения отвечает за транспорт воды и минеральных веществ в надземные органы растения и транспорт органических веществ из стебля в корень, а также выполняет функцию опоры.

§ 2 Движение воды по растению

Как каждая клетка растения получает воду из почвы? Вода впитывается из почвы корневыми волосками, благодаря нагнетанию давления внутри этих клеток. Данное явление называют корневым давлением. Далее из клеток с корневыми волосками водный раствор просачивается в клетки корня и, перемещаясь из клетки в клетку попадает в сосуды. По сосудам корня вода поднимается сначала в стебель, а по сосудам стебля — к листьям растения.

Вода движется вверх по сосудам проводящей ткани (ксилеме), благодаря не только корневому давлению, но и за счет испарения воды в листьях. Недостаток воды в листьях, вызывает поверхностное натяжение в сосудах ксилемы, которое способно тянуть вверх весь столб воды, создавая массовый поток. Далее по ксилеме вода расходится по всему растению и расходуется для процессов обмена, веществ, фотосинтеза и испарения.

§ 3 Корни влаголюбивых и засухоустойчивых растений

Корни влаголюбивых и засухоустойчивых растений различаются по длине, толщине и расположению в почве. Корни некоторых растений могут достигать глубины до 15 метров, тем самым достигая выхода грунтовых вод в засушливых районах. Например, у подсолнечника, корни достигают 3 метров. Благодаря быстро внедряющемуся вглубь главному корню и сильной ветвистой системе боковых корней и корешков, подсолнечник может выдерживать засуху и хорошо усваивать питательные вещества и почвенную влагу. А вот у огурца глубина корня нередко остается на глубине не более полуметра и корень располагается «вширь», занимая определенную площадь.

Как все клетки, клетки корня нуждаются в дыхании. Они поглощают кислород из почвы и выделяют в нее углекислый газ. Поэтому для многих культурных растений применяют приемы обогащения почвы кислородом - рыхление, вспашка, боронование.

В теплой почве корни лучше усваивают влагу, чем в холодной. Поэтому для теплолюбивых растений нашего огорода мы используем укрытия для грядок - торф или пленку.

А замечали ли вы, что многие садоводы, выращивающие томаты, весной пересаживают саженцы, отщипывая верхушку корня. Зачем они так делают? Чтобы растение быстрее развивалось, необходимо много воды и питания.

Эти процессы обеспечит мощная корневая система. А возникает развитие ветвления корня тогда, когда главный корень не нарастает в длину, поэтому его и прищипывают.

§ 4 Краткие итоги по теме урока

1. Строение корня взаимосвязано с его основной функцией - всасыванием воды и проведением ее к побегу растения.

2. Во внешнем строении корня можно выделить следующие зоны: зона деления (с корневым чехликом), зона растяжения, зона всасывания, зона ветвления и зона проведения.

3. Корень всасывает воду за счет корневого давления и силы испарения с поверхности листьев.

4. Для развития корня необходимы: почвенная влага, кислород и тепло.

Использованные изображения:

Вода, поглощенная клетками корня, под влиянием разности вод­ных потенциалов, которые возникают благодаря транспирации, а так­же силе корневого давления, передвигается до проводящих элемен­тов ксилемы. Согласно современным представлениям, вода в корне­вой системе передвигается не только по живым клеткам. В корневой системе существуют два относительно независимых друг от друга объема, по которым передвигается вода,- апопласт и симпласта. Апопласт - это свободное пространство корня, в которое вхо­дят межклетные промежутки, оболочки клеток, а также сосуды кси­лемы. Симпласт - это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочислен­ным плазмодесмам, соединяющим между собой протопласт отдель­ных клеток, симпласт представляет единую систему. Апопласт, по-видимому, не непрерывен, а разделен на два объема. Первая часть апопласта расположена в коре корня до клеток эндодермы, вторая - по другую сторону клеток эндодермы, и включает в себя сосуды кси­лемы. Клетки эндодермы благодаря пояскам Каспари представляют как бы барьер для передвижения воды по свободному пространству (межклетникам и клеточным оболочкам). Для того чтобы попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мем­брану и протоплазму клеток эндодермы. Передвижение воды по коре корпя идет главным образом по апопласту и лишь частично по симпласту. Однако в клетках эндодермы передвижение воды идет, по-видимому, по симпласту. Далее вода поступает в сосуды ксилемы. Это, очевидно, вызвано противоположными изменениями в процессах обмена с разных сторон клеток. Согласно другой, это след­ствие секреции солей в сосуды ксилемы, в результате чего там соз­дается повышенное осмотическое давление. Дальнейшее передвиже­ние воды идет по сосудистой системе корня, стебля и листа. Прово­дящие элементы ксилемы состоят из сосудов (трахей) и трахеид.

Опыты с кольцеванием показали, что восходящий ток воды по растению движется в основном по ксилеме. В сосудах ксилемы вода встречает незначительное сопротивление, что, естественно, облегча­ет передвижение воды на большие расстояния. Правда, в настоящее время признается, что некоторое количество воды передвигается и вне сосудистой системы. Однако по сравнению с ксилемой сопротив­ление движению воды других тканей значительно больше (не менее чем на три порядка). Это приводит к тому, что вне ксилемы движет­ся всего от 1 до 10% общего потока воды.

Из сосудов стебля вода попадает в сосуды листа. Вода движется из стебля через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся все более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передви­жении к клеткам мезофилла листа. Именно поэтому густота жилко­вания листа считается одним из важнейших признаков ксероморфной структуры - отличительной чертой растений, устойчивых к засухе.

Иногда мелких ответвлений жилок листа так много, что они под­водят воду почти к каждой клетке. Вся вода в клетке находится в равновесном состоянии. Иначе говоря, в смысле насыщенности во­дой, имеется равновесие между вакуолью, цитоплазмой и клеточной оболочкой, их водные потенциалы равны. В связи с этим, как только в силу процесса транспирации возникает ненасыщенность водой клеточных стенок паренхимных клеток, она сейчас же передается внутрь клетки, водный потенциал падает, сосущая сила возрастает. Вода передвигается от клетки к клетке благодаря градиенту сосущей силы. По-видимому, передвижение воды от клетки к клетке в листо­вой паренхиме идет не по симпласту, а в основном по клеточным стенкам, где сопротивление значительно меньше.

Таким образом, по сосудам вода движется благодаря присасываю­щей силе транспирации и создающемуся в силу этого градиенту вод­ного потенциала. Однако ни один всасывающий насос не может под­нять воду на высоту больше 10 м (соответствующую 0,1 МПа нор­мального давления). Между тем есть деревья, у которых вода поднимается на высоту более 100 м. Объяснение этому дает теория сцепления между молекулами воды, которое в полной мере проявляет­ся при отсутствии воздуха.

Вся вода в растении представляет единую взаимосвязанную сис­тему. Поскольку между молекулами воды имеются силы сцепления (когезия), вода поднимается на высоту значительно большую 10 м. Сила сцепления увеличивается, так как молекулы воды обладают большим сродством друг к другу. Силы сцепления существуют и между водой и стенками сосудов. Стенки проводящих элементов кси­лемы эластичны. В силу этих двух обстоятельств даже при недостат­ке воды связь между молекулами воды и стенками сосудов не нару­шается. Это подтверждается исследованиями по изменению толщины стебля травянистых растений. Определения показали, что в полуден­ные часы толщина стебля травянистых растений уменьшается. Если перерезать стебель, то сосуды сразу расширяются и воздух врывает­ся в них. Степень натяжения водных нитей в сосудах зависит от соотноше­ния процессов поглощения и испарения воды. Все это позволяет рас­тительному организму поддерживать единую водную систему и не обязательно восполнять каждую каплю испаряемой воды.

В том случае, если в отдельные членики сосудов попадает воздух, они, по-видимому, выключаются из общего тока проведения воды. Таков путь воды по растению и его основные движущие силы. Современные методы исследования позволяют определить ско­рость передвижения воды по растению. Согласно полученным дан­ным, скорость движения воды в течение суток изменяется. В днев­ные часы она значительно больше. При этом разные виды растений отличаются по скорости передвижения воды. Если скорость передви­жения у хвойных пород обычно не превышает 0,5-1 см/ч, то у лиственных она значительно выше. У дуба, например, скорость передвижения составляет 43,6 см/ч. Скорость передвижения воды мало зависит от напряженности обмена. Изменение температуры, введение метаболических ингибиторов не влияют на передвижение воды. Вместе с тем этот процесс, как и следовало ожидать, очень сильно зависит от скорости транспирации и от диаметра водопроводящих сосудов. В более широких сосудах вода встречает меньшее со­противление. Однако надо учитывать, что в более широкие сосуды скорее могут попасть пузырьки воздуха или произойти какие-либо иные нарушения тока воды.

Вода движется в растении по градиенту водного потенциала. Вода, поглощенная корневыми волосками и другими клетками эпидермиса, из клеток внешней части корня перемещается к ксилеме, занимающей центральную часть корня (рис. 6.8). Главным путем диффузии воды во внешней части корня служит апопласт - непрерывная совокупность клеточных стенок. Однако в эндодерме (цилиндрическом слое клеток, окружающем проводящую ткань) свободная диффузия по клеточным стенкам наталкивается на преграду - водонепроницаемый пробковый слой пояска Каспари. Вода должна изменить здесь свой путь и пройти сквозь мембрану и протопласт клеток эндодермы, играющей, таким образом, роль осмотического барьера между корой корня и его центральным цилиндром. У однодольных пробковеют также и внутренние тангенциальные стенки клеток, но эти стенки пронизаны порами, по которым, как по каналам, может проходить вода.

По ксилеме вода поднимается в надземные части растения. Ксилема состоит из нескольких типов клеток. Вода движется в ней главным образом по сосудам и трахеидам (рис. 2.6 и 6.9). И те и другие клетки прекрасно приспособлены для этой цели: они вытянуты в длину, лишены живого содержимого и внутри полые, т. е. это как бы трубки для воды. Одревесневшие вторичные клеточные стенки достаточно прочны на разрыв, чтобы выдерживать огромную разность давлений, возникающую при подъеме воды к вершинам высоких деревьев. Торцевые, а иногда и боковые стенки члеников сосудов перфорированы; сосуды, состоящие из соединенных конец в конец члеников, образуют длинные трубки, по которым легко проходит вода с растворенными в ней минеральными веществами. В трахеидах нет перфораций, и вода, для того чтобы попасть из одной трахеиды в другую, должна пройти через их торцевые стенки; однако трахеиды - очень длинные клетки, а потому и эта конструкция достаточно хорошо приспособлена для проведения воды. У цветковых растений есть и сосуды, и трахеиды; у более при-митивных форм сосудов, как правило, нет.

Листовые жилки, состоящие из тяжей ксилемы и флоэмы, образуют в листе настолько густую сеть, что любая его клетка оказывается достаточно близко от источника воды (рис. 3.9). Из ксилемы вода диффундирует в стенки клеток мезофилла. Таким образом, вода в жидкой фазе заполняет весь путь от почвы - через корень и стебель - до клеток мезофилла в листе. Суммарный поток воды направлен всегда в сторону меньшего водного потенциала, т. е. ψ максимален в почве, несколько ниже в клетках корня и самый низкий в клетках, примыкающих к эпидермимису листа. Малая величина ψ в этих последних клетках объясняется главным образом испарением воды с поверхности листа, т. е. транспирацией (которой посвящен следующий раздел). Табл. 6.2 дает представление о градиентах, обусловливающих движение воды в растении от ее поступления из почвы до испарения в атмосферу.


Таблица 6.2 Примерные значения водного потенциала (ψ) и разности водных потенциалов (Δψ) для гипотетической системы почва - растение - воздух. [Предполагаемые условия - сравнительно небольшое дерево, хорошо увлажненная почва, относительная влажность воздуха около 50% при 22 °С (ψ=-1000 бар) 1)]

( 1) R. G. S. Bidwell. 1974. Plant Physiology, New York, Macmillan. )

Вода переходит из растения в окружающий воздух главным образом в парообразном состоянии. В мезофилле листа имеются обширные межклеточные пространства, и каждая клетка мезофилла хотя бы одной своей стороной граничит с таким межклетником. Вследствие испарения воды с влажных клеточных стенок воздух в межклетниках насыщен водяными парами, и часть этих паров теряется - выходит наружу. Поскольку у большинства растений клетки эпидермиса покрыты воскообразной водонепроницаемой кутикулой, водяные пары выходят из листа в атмосферу главным образом через устьица (рис. 6.10).