Расчет конструкции, направленной на предотвращение предельных состояний первой группы, выражается неравенством:

N ≤ Ф, (2.1)

где N – усилие в рассматриваемом элементе (продольная сила, изгибающий момент, поперечная сила) от действия предельных расчетных значений нагрузок; Ф – несущая способность элемента.

Для проверки предельных состояний первой группы используются предельные расчетные значения нагрузок F m , определяемые по формуле:

F m = F 0 g fm ,

где F 0 - характеристическое значение нагрузки, g fm , – коэффициент надежности по предельному значению нагрузки, учитывающий возможное отклонение нагрузки в неблагоприятную сторону. Характеристические значения нагрузок F 0 и значения коэффициент g fm определяют в соответствии с ДБН . Этим вопросам посвящены разделы 1.6 – 1.8 настоящей методической разработки.

При подсчете нагрузок, как правило, учитывают коэффициент надежности по назначению сооружения g n , значения которого в зависимости от класса ответственности сооружения и типа расчетной ситуации, приведены в табл. 2.3. Тогда выражение для определения предельных значений нагрузок примет вид:

F m = F 0 g fm ∙g n

Правую часть неравенства (1.1) можно представить в виде:

Ф = S R y g c , (2.2)

где R y – расчетное сопротивление стали, установленное по пределу текучести;S – геометрическая характеристика сечения (при растяжении или сжатии S представляет собой площадь сечения А , при изгибе – момент сопротивления W ); g c – коэффициент условия работы конструкции, значения которого в зависимости от материала конструкции установлены соответствующими нормами. Для стальных конструкций значения g c приведены в табл. 2.4.

Подставляя в формулу (2.1) значение (2.2), получим условие

N ≤ S R y g c

Для растянутых элементов при S = A

N ≤ A R y g c

Разделив левую и правую части неравенства на площадь А, получим условие прочности растянутого или сжатого элемента:

Для изгибаемых элементов при S = W, тогда

M ≤ W R y g c

Из последнего выражения вытекает формула для проверки прочности изгибаемого элемента

Формула для проверки устойчивости сжатого элемента имеет вид:

где φ – коэффициент продольного изгиба, зависящий от гибкости стержня

Таблица 2.4 – Коэффициент условий работы g с

Элементы конструкций g с
1.Сплошные балки и сжатые элементы ферм перекрытий под залами театров, клубов, кинотеатров, под помещениями магазинов, архивов и т.п. при временной нагрузке, которая не превышает вес перекрытия 2. Колонны общественных зданий и опор водонапорных башен. 3. Колоны одноэтажных промышленных зданий с мостовыми кранами 4. Сжатые основные элементы (кроме опорных) решетки составного таврового сечения из уголков сварных ферм покрытий и перекрытий при расчетах на устойчивость этих с гибкостью l ≥ 60 5. Затяжки, тяги, оттяжки, подвески в расчетах на прочность в неослабленных сечениях 6. Элементы конструкций из стали с пределом текучести до 440 Н/мм 2 , несущие статическую нагрузку, в расчетах на прочность в сечении, ослабленном отверстиями болтов (кроме фрикционных соединений) 8. Сжатые элементы из одиночных уголков, прикрепляемых одной полкой (для неравнополочных уголков – меньшей полкою) за исключением элементов решетки пространственных конструкций и плоских ферм из одиночных уголков 9 Опорные плиты, выполненные из стали с пределом текучести до 390 Н/мм 2 , несущую статическую нагрузку, толщиною, мм: а) до 40 включительно б) от 40 до 60 включительно в) от 60 до 80 включительно 0,90 0,95 1,05 0,80 0,90 1,10 0,75 1,20 1,15 1,10
Примечания: 1. Коэффициенты g с < 1 при расчете одновременно учитывать не следует. 2. При расчетах на прочность в сечении, ослабленном отверстиями для болтов, коэффициенты g с поз. 6 и 1, 6 и 2, 6 и 5 следует учитывать одновременно. 3. При расчете опорных плит коэффициенты, приведенные в поз. 9 и 2, 9 и 3, следует учитывать одновременно. 4. При расчете соединений коэффициенты g с для элементов, приведенных в поз. 1 и 2, следует учитывать вместе с коэффициентом g в . 5. В случаях, не оговоренных в настоящей таблице, в расчетных формулах следует принимать g с =1

При расчете конструкций, работающих в условиях повторных нагружений (например, при расчете подкрановых балок), для определения усилий используют циклическую расчетную нагрузку, значение которой определяют по формуле.

по геометрическому признаку :

    массив - конструкция, в которой все размеры одного порядка;

    брус - элемент, в котором два размера во много раз меньше третьего;

    плита - элемент, в котором один размер во много раз меньше двух других;

    стержневые системы представляют собой геометрически неизменяемые системы стержней, соединенных между собой шарнирно или жестко. К ним относятся строительные фермы (балочные или консольные)

с точки зрения статики:

    статически определимые – конструкции, усилия или напряжения в которых могут быть определены только из уравнений равновесия;

    статически неопределимые – конструкции, для которых одних уравнений статики недостаточно;

по используемым материалам : стальные, деревянные, железобетонные, бетонные, каменные (кирпичные);

с точки зрения напряженно-деформированного состояния (т.е. возникающих в конструкциях внутренних усилий, напряжений и деформаций под действием внешней нагрузки): простейшие, простые, сложные.

  1. Требования к несущим конструкциям:

Надежность – способность конструкции сохранять свои эксплуатационные качества в течение всего срока службы сооружения, а также в период ее транспортирования с заводов на строительную площадку и в момент монтажа.

Долговечность - предельный срок службы зданий и сооружений, в течение которого они сохраняют требуемые эксплуатационные качества.

Индустриальность

Унификация - ограничение количества типоразмеров параметров зданий и типовых изделий с учетом их взаимозаменяемости.

  1. Физический смысл предельных состояний конструкций. Примеры предельных состояний первой и второй групп. Суть расчета по предельным состояниям.

Предельными называются такие состояния для здания, сооружения, а также основания или отдельных конструкций, при которых они перестают удовлетворять заданным эксплуатационным требованиям, а также требованиям, заданным при их возведении. Предельные состояния конструкций (зданий) подразделяются на две группы:

    К предельным состояниям первой группы относятся: общая потеря устойчивости формы; потеря устойчивости положения; хрупкое, вязкое или иного характера разрушение; разрушение под совместным воздействием силовых факторов и неблагоприятных влияний внешней среды и др.

    К предельным состояниям второй группы относятся состояния, затрудняющие нормальную эксплуатацию конструкций (зданий) или снижающие их долговечность вследствие появлений недопустимых перемещений (прогибов, осадок, углов поворота), колебаний и трещин;

Суть расчета: метод расчета строительных конструкций по предельным состояниям имеет своей целью не допустить наступления ни одного из предельных состояний, которые могут возникнуть в конструкции (здании).

  1. Структура и содержание основных расчетных формул при расчете по предельным состояниям первой и второй групп.

При расчетах по предельным состояниям первой и второй групп в качестве главного прочностного показателя материала, как уже отмечалось, устанавливается его сопротивление, которое (наряду с другими характеристиками) может принимать нормативные и расчетные значения:

R n - нормативное сопротивление материала , представляет собой основной параметр сопротивления материалов внешним воздействиям и устанавливается соответствующими главами строительных норм (с учетом условий контроля и статистической изменчивости сопротивлений). Физический смысл нормативного сопротивления R n - это контрольная или браковочная характеристика сопротивления материала с обеспеченностью не менее 0,95%;

R - расчетное сопротивление материала , определяется по формуле:

γ m - коэффициент надежности по материалу , учитывает возможные отклонения сопротивления материала в неблагоприятную сторону от нормативных значений, γ m > 1.

γ c - коэффициент условий работы , учитывает особенности работы материалов, элементов и соединений конструкций, а также зданий и сооружений в целом, если эти особенности имеют систематический характер, но не отражаются в расчетах прямым путем (учет температуры, влажности, агрессивности среды, приближенности расчетных схем и др.);

N ; N ; γ f , учитывает возможные отклонения нагрузок в неблагоприятную (большую или меньшую) сторону от их нормативных значений; γ n - коэффициент надежности по ответственности , учитывает экономические, социальные и экологические последствия, которые могут возникать в результате аварий.

N s ег и сервисное сопротивление R ser считаются расчетными для расчетов по предельным состояниям второй группы.

При расчетах по первой группе предельных состояний , которые связаны с обеспечением несущей способности конструкций (здания), принимают расчетные значения: расчетные нагрузки N и расчетные сопротивления материала R.

    Работа материалов для несущих конструкций под нагрузкой и их расчетные характеристики.

    Сталь .

три участка работы стали: 1 - участок упругой работы; 2 - участок пластической работы; 3 - участок упругопластической работы.

нормативные и расчетные сопротивления, необходимые для расчета конструкций, принимаются по пределу текучести

R уп - нормативное сопротивление стали, принятое по пределу текучести; R y - расчетное сопротивление стали, принятое по пределу текучести;

R ип - нормативное сопротивление стали, принятое по временному сопротивлению; R и - расчетное сопротивление стали, принятое по временному сопротивлению;

    Древесина

Деревянные конструкции выполняются из лесоматериалов хвойных и лиственных пород, которые делятся на круглые - бревна, пиленые - пиломатериалы и строительную фанеру.

Работа древесины зависит от вида загружения (растяжение, сжатие, изгиб, смятие, скалывание), направления действия усилия по отношению к направлению волокон древесины, длительности приложения нагрузки, породы древесины и других факторов. Наличие пороков древесины (косослоя, сучков, трещин и т.п.) оказывает существенное влияние на ее прочность. Древесина подразделяется на три сорта, наиболее качественная древесина отнесена к первому сорту.

Диаграмма работы древесины вдоль волокон: 1 - на растяжение; 2 - на сжатие; Я^р - временное сопротивление чистой древесины; с - нормальные напряжения; е - относительные деформации

    Железобетон. Железобетон является комплексным строительным материалом, в котором совместно работают бетон и стальная арматура. Для понимания работы железобетона и определения характеристик, необходимых для расчета, рассмотрим каждый из входящих в его состав материалов.

Основным показателем качества бетона является класс прочности на сжатие, который устанавливается на основании испытаний бетонных кубов в возрасте 28 суток.

Диаграмма напряжений и деформаций бетона: 1 - зона упругих деформаций; 2- зона пластических деформаций; σ bu - временное сопротивление бетона сжатию; σ btu - временное сопротивление бетона растяжению; Еb - модуль упругости бетона;

    Арматура. Арматура в железобетонных конструкциях принимается в зависимости от типа конструкции, наличия предварительного напряжения, а также условий эксплуатации зданий и сооружений

По характеру работы арматуры, отраженной на диаграмме, различают три вида арматурных сталей: 1. Сталь с выраженной площадкой текучести (мягкая арматурная сталь). Предел текучести таких сталей -σ у 2 - Арматурная сталь с условным пределом текучести - σ 0.2 . Предел текучести таких сталей принимается равным напряжению, при котором остаточные деформации образца составляют 0,2%. 3 - Арматурная сталь с линейной зависимостью σ 0.2 - почти до разрыва. Для таких сталей предел текучести устанавливается как для сталей второго вида.

Диаграммы растяжения арматурных сталей:

.

    Каменная кладка. Прочность каменной кладки зависит в основном от прочности камня (кирпича) и раствора.

Диаграмма деформаций каменной кладки при сжатии: 1 - зона упругих деформаций; 2- зона пластических деформаций; R и - временное сопротивление (средний предел прочности сжатию кладки); tg φ 0 = E 0 - модуль упругости (начальный модуль деформации)

Этот метод с 1955 г. введен в практику расчета строительных конструкций. Предельным называют такое состояние конструкции, при котором невозможна ее дальнейшая нормальная эксплуатация. В соответствии со строительными нормами и правилами (СНиП) установлено три предельных состояния: первое предельное состояние, определяемое несущей способностью (прочностью или устойчивостью); второе предельное состояние, наступающее при появлении чрезмерных деформаций или колебаний, нарушающих нормальную эксплуатацию;  третье предельное состояние, возникающее при образовании трещин или других местных повреждений. Расчет по первому предельному состоянию является одним из вариантов расчета по предельным (разрушающим) нагрузкам, но в отличие от последнего учитывается еще и вероятность наступления предельного состояния. При расчете по предельным состояниям вместо одного общего коэффициента запаса вводят три отдельных коэффициента. Коэффициент перегрузки n1 учитывает неточности в определении нагрузки. Обычно нагрузку устанавливают нормами на основании результатов длительных наблюдений. Такую нагрузку называют нормативной Рн. Фактическая нагрузка может отклоняться от нормативной в неблагоприятную сторону. Для учета такого отклонения и вводят коэффициент перегрузки. Умножая нормативную нагрузку на этот коэффициент, получают расчетную нагрузку: Р n. Степень точности в определении различных нагрузок неодинакова, поэтому для каждого вида нагрузки вводится свой коэффициент перегрузки. Постоянная нагрузка (собственный вес конструкции) может быть подсчитана наиболее точно, поэтому коэффициент перегрузки принимается небольшим n 1,1. Временную нагрузку – вес поезда, толпы, давление на сооружение ветра, снега – точно подсчитать невозможно. В связи с этим для таких нагрузок вводятся повышенные коэффициенты перегрузки. Например, для снеговой нагрузки n 1,4. Расчетная нагрузка получается путем суммирования всех видов действующих нагрузок, помноженных на соответствующие коэффициенты перегрузки. Коэффициент однородности материала k 1, учитывающий возможное снижение прочности материала против установленной нормами и называемой нормативным сопротивлением Расчетное сопротивление данного материала получается путем умножения нормативного сопротивления на коэффициент однородности. Чем более однороден материал, тем ближе к единице коэффициент k. Нормативное сопротивление – то напряжение, которое, как минимум, должно быть обеспечено при испытаниях образцов материала данной марки. Для пластичных материалов за нормативное сопротивление принимают наименьшее значение предела текучести, а для хрупких – предела прочности. Например, для стали марки Ст.3 нормативное значение предела текучести МПа. В действительности возможны некоторые отклонения в ту или другую сторону, поэтому коэффициент однородности принимается k = 0,85 – 0,9, и расчетное сопротивление оказывается равным аПМ. Коэффициент условий работы m, который учитывает все остальные весьма разнообразные обстоятельства, могущие вызвать понижение несущей способности конструкции, как-то: специфические особенности работы материала, неточности расчетных предпосылок, неточности изготовления, влияние влажности, температуры, неравномерности распределения напряжений по сечению и другие факторы, которые не учтены в расчете прямым путем. При неблагоприятных условиях принимают, при нормальных, при особо благоприятных в отдельных случаях принимаютm 1. Основное расчетное условие метода предельных состояний может быть в общем виде записано следующим образом: где N – расчетное усилие, т.е. усилие (или изгибающий момент) от нормативных нагрузок, умноженных на соответствующие коэффициенты перегрузки; – нормативные сопротивления материала (предел прочности, текучести); – коэффициенты однородности; S – геометрические характеристики сечения (площадь, момент сопротивления); 1,. .i – коэффициенты условия работы; f – функция, соответствующая роду усилия (сжатие, растяжение, кручение, изгиб и т. д.). При расчете элементов конструкции, работающих на растяжение или сжатие, условие метода предельных состояний можно записать в следующем виде: где N – расчетное усилие; FНТ – площадь (нетто) опасного сечения. При расчете балок условие записывается так: Rm, где M – расчетный изгибающий момент; W – момент сопротивления сечения; m – коэффициент условий работы, который для остальных балок в большинстве случаев принимается равным единице. При этом возможны два случая. По условиям эксплуатации допустимые остаточные прогибы. В этом случае несущая способность балки определяется по изгибающему моменту: , где WПЛ – пластичный момент сопротивления; R – расчетное сопротивление. Если остаточные прогибы недопустимы, то предельным состоянием считается то, при котором напряжения в крайних волокнах достигают расчетного сопротивления. Несущая способность определяется из условия W, где W – момент сопротивления сечения при работе в упругой стадии. При определении несущей способности двутавровых и тому подобных балок с тонкими стенками и мощными поясами во всех случаях рекомендуется пользоваться предыдущей формулой MR W. Расчет статически неопределимых балок производится в предположении выравнивания изгибающих моментов в местах возможного образования пластических шарниров. Методы расчета выбираются в зависимости от условий работы конструкции и требований, которые к ней предъявляются. Если по условиям эксплуатации требуется ограничить величину деформаций конструкции, производится расчет на жесткость. Конечно, расчет на жесткость не заменяет расчета на прочность, но возможны случаи, когда размеры поперечных сечений элементов конструкции из расчета на жесткость оказываются больше, чем из расчета на прочность. В этом случае основным, решающим для данной конструкции оказывается расчет на жесткость.

Что такое предельные состояния и как с ними разобраться применительно к расчетам конструкций? Все знают, что бывает две группы предельных состояний: первая и вторая. Что же обозначает это разделение?

Само название «предельное состояние » обозначает, что для любой конструкции при определенных условиях наступает такое состояние, при котором исчерпывается какой-то определенный предел. Условно, для удобства расчетов, таких пределов вывели два: первое предельное состояние – это когда исчерпывается предел прочности, устойчивости и выносливости конструкции; второе предельное состояние – когда деформации конструкции превышают предельно допустимые (ко второму предельному состоянию для железобетона также относят ограничение по возникновению и раскрытию трещин).

Перед тем, как перейти к разбору расчетов по первому и второму предельному состоянию, следует разобраться, какая часть расчета конструкции вообще делится на эти две части. Любой расчет начинается со сбора нагрузки. Затем следует выбор расчетной схемы и непосредственно расчет, в результате которого мы определяем усилия в конструкции: моменты, продольные и поперечные силы. И только после того, как усилия определены, мы переходим к расчетам по первому и второму предельному состоянию. Обычно они выполняются именно в такой последовательности: сначала по первому, потом по второму. Хотя бывают и исключения, но о них ниже.

Нельзя сказать, что для какой-то конструкции важнее: прочность или деформативность, устойчивость или трещиностойкость. Нужно проводить расчет по двум предельным состояниям и выяснять, какое из ограничений бывает наиболее неблагоприятным. Но для каждого типа конструкций есть свои особые моменты, которые полезно знать, чтобы было проще ориентироваться в среде предельных состояний. В этой статье мы на примерах разберем предельные состояния для различных типов железобетонных конструкций.

Расчет балок, плит и других изгибаемых элементов по первому и второму предельному состоянию

Итак, вам нужно рассчитать изгибаемый элемент, и вы думаете, с чего начать расчет, и как понять, все ли посчитано? Все рекомендуют сделать расчет не только по первому, но и по второму предельному состоянию. Но что же это такое? Где конкретика?

Для расчета изгибаемых элементов вам понадобится «Пособие по проектированию бетонных и железобетонных конструкций из тяжелых бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)» и непосредственно сам СНиП 2.03.01-84 «Бетонные и железобетонные конструкции» обязательно с изменением 1 (очень важным для расчета по второй группе предельных состояний).

Открываете раздел 3 пособия «Расчет железобетонных элементов по предельным состояниям первой группы», а именно «Расчет железобетонных элементов по прочности» (начиная с п. 3.10). Теперь нужно выяснить, из каких этапов он состоит:

– это та часть расчета, в которой мы проверяем, выдержит ли наша конструкция воздействие изгибающего момента. Проверяется сочетание двух важных факторов: размер сечения элемента и площадь продольной арматуры. Если проверка показывает, что действующий на конструкцию момент меньше предельно допустимого, значит все хорошо, и можно переходить к следующему этапу.

2) Расчет сечений, наклонных к продольной оси элемента – это расчет конструкции на действие поперечной силы. Для проверки нам важно установить размеры сечения элемента и площадь поперечной арматуры. Так же, как и на предыдущем этапе расчета, если действующая поперечная сила меньше предельно допустимой, прочность элемента считается обеспеченной.

Оба этапа вместе с примерами подробно рассмотрены в пособии. Эти два расчета являются исчерпывающими расчетами по прочности для классических изгибаемых элементов. Если есть какие-либо особые условия (многократно повторяющиеся нагрузки, динамика), их нужно учитывать в расчете на прочность и выносливость (зачастую, учет производится введением коэффициентов).

1) Расчет железобетонных элементов по образованию трещин – это самый первый этап, в котором мы выясняем, образуются ли трещины в нашем элементе при воздействии действующих на него усилий. Трещины не образуются, если наш максимальный момент Mr меньше момента Mcrc, вызывающего образование трещин.

2) Расчет железобетонных элементов по раскрытию трещин – это следующий этап, на котором мы проверяем величину раскрытия трещин в конструкции и сравниваем ее с допустимыми размерами. Обратите внимание на п. 4.5 пособия, в котором оговаривается, в каких случаях этот расчет выполнять не нужно – лишняя работа нам ни к чему. Если же расчет необходим, то нужно выполнить две его части:

а) расчет по раскрытию трещин, нормальных к продольной оси элемента – его мы выполняем по п. 4.7-4.9 пособия (с обязательным учетом изменения 1 к СНиП , т.к. расчет там уже кардинально другой);

б) расчет по раскрытию трещин, наклонных к продольной оси элемента – его нужно выполнять по п. 4.11 пособия, также с учетом изменения 1.

Естественно, если согласно первому этапу расчета трещины не образуются, то этап 2 мы пропускаем.

3) Определение прогиба – это последний этап расчета по второму предельному состоянию для изгибаемых железобетонных элементов, выполняется он согласно п. 4.22-4.24 пособия. В этом расчете нам нужно найти прогиб нашего элемента и сравнить его с прогибом, нормированным ДСТУ Б. В.1.2-3:2006 «Прогибы и перемещения».

Если все эти части расчетов выполнены, считайте, что расчет элемента как по первому, так и по второму предельному состоянию выполнен. Конечно, если есть какие-то особенности конструкции (подрезка на опоре, отверстия, сосредоточенные нагрузки и т.д.), то нужно дополнять расчет с учетом всех этих нюансов.

Расчет колонн и других центрально и внецентренно сжатых элементов по первому и второму предельному состоянию

Этапы этого расчета не особо отличаются от этапов расчета изгибаемых элементов, да и литература та же.

Расчет по предельному состоянию первой группы включает в себя:

1) Расчет сечений, нормальных к продольной оси элемента – этот расчет так же, как и для изгибаемых элементов, определяет необходимый размер сечения элемента и его продольное армирование. Но в отличие от расчета изгибаемых элементов, где проверяется прочность сечения на действие изгибающего момента М, в данном расчете выделяется максимальная вертикальная сила N и эксцентриситет приложения этой силы «е» (при перемножении, правда, они дают все тот же изгибающий момент). В пособии подробно изложена методика расчета для всех стандартных и нестандартных сечений (начиная с п. 3.50).

Особенностью данного расчета является то, что нужно учитывать влияние прогиба элемента, а также учитывается влияние косвенного армирования. Прогиб элемента определяется при расчете по второй группе предельных состояний, но допускается при расчете по первому предельному состоянию упростить расчет путем введения коэффициента согласно п. 3.54 пособия.

2) Расчет сечений, наклонных к продольной оси элемента – этот расчет на действие поперечной силы согласно п. 3.53 пособия аналогичен расчету изгибаемых элементов. В результате расчета мы получаем площадь поперечной арматуры в конструкции.

Расчет по предельному состоянию второй группы состоит из этапов:

1) Расчет железобетонных элементов по образованию трещин.

2) Расчет железобетонных элементов по раскрытию трещин.

Эти два этапа абсолютно аналогичны расчету изгибаемых элементов – имеются максимальные усилия, следует определить, образуются ли трещины; и если образуются, то сделать при необходимости расчет по раскрытию трещин, нормальных и наклонных к продольной оси элемента.

3) Определение прогиба . Точно так же, как и для изгибаемых элементов, нужно определять прогиб и для внецентренно сжатых элементов. Предельные прогибы как всегда можно найти в ДСТУ Б В.1.2-3:2006 «Прогибы и перемещения».

Расчет фундаментов по первому и второму предельному состоянию

Расчет фундаментов кардинально отличается от приведенных выше расчетов. Как всегда, при расчете фундаментов необходимо начать со сбора нагрузок либо с расчета каркаса здания, в результате которого определяться основные нагрузки на фундамент N, M, Q.

После того, как собраны нагрузки и выбран тип фундамента, необходимо перейти к расчету грунтового основания под фундаментом. Этот расчет, как и любые другие расчеты, делится на расчет по первому и по второму предельному состоянию:

1) обеспечение несущей способности основания фундамента – проверяется прочность и устойчивость оснований (первое предельное состояние) – пример расчета ленточного фундамента ;

2) расчет основания по деформациям – определение расчетного сопротивления грунта основания, определение осадки, определение крена фундамента (второе предельное состояние).

Разобраться с этим расчетом поможет «Пособие по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83)».

Как вы уже поняли из формулировок, при определении размера подошвы фундамента (будь то лента или столбчатый фундамент), мы прежде всего выполняем расчет грунтового основания, а не фундамента. И в этом расчете (кроме скальных грунтов) намного важнее выполнить расчет основания по деформациям – все, что перечислено в пункте 2 выше. Расчет по первому предельному состоянию зачастую выполнять вообще не требуется, т.к. предотвратить деформации гораздо важнее, они возникают намного раньше, чем потеря грунтом несущей способности. В каких случаях следует выполнять расчет по первой группе предельных состояний, можно узнать из п. 2.259 пособия.

Теперь рассмотрим расчет основания по деформациям. Чаще всего проектировщики прикидывают расчетное сопротивление грунта, сравнивают его с нагрузкой на грунт от здания, подбирая необходимую площадь фундамента, и на этом останавливаются. Это неверный подход, т.к. выполнена лишь часть работы. Расчет фундамента считается завершенным, когда выполнены все этапы, перечисленные в пункте 2.

Очень важным является определение осадки фундаментов. Особенно это важно при различных нагрузках или неравномерных грунтах, когда есть риск возникновения неравномерных осадок фундаментов (подробно об этом изложено в этой статье "Что нужно знать о ленточном монолитном фундаменте"). Чтобы быть уверенным в дальнейшей целостности конструкций здания, всегда нужно проверять разность осадок фундаментов по таблице 72 пособия. Если разность осадок выше предельно допустимой, возникает риск возникновения трещин в конструкциях.

Крен фундамента необходимо определять при наличии изгибающих моментов, действующих на фундамент. Также крен нужно проверять при неравномерной нагрузке на грунте – она также влияет на деформации грунтового основания.

Но после того, как выполнен расчет основания по второму и возможно первому предельному состоянию и определены размеры подошвы фундамента, нужно перейти к следующему этапу: расчету самого фундамента.

При расчете основания мы определили давление под подошвой фундамента. Это давление прикладывается к подошве как нагрузка (направленная снизу вверх), а опорой служит колонна или стена, опирающаяся на фундамент (такой себе перевертыш). Получается, что в каждую сторону от опоры мы имеем консоль (обычно эти консоли одинаковые), и их нужно рассчитать с учетом равномерно распределенной нагрузки, равной давлению под подошвой фундамента. Хорошо понять принцип расчета на примере столбчатого фундамента можно с помощью «Пособия по проектированию фундаментов на естественном основании под колонны зданий и сооружений (к СНиП 2.03.01-84 и СНиП 2.02.01-83)» - там в примерах изложены все этапы расчета, как по первому, так и по второму предельному состоянию. По результатам расчета консоли мы сначала определяем высоту ее сечения и армирование (это расчет по первому предельному состоянию), затем проверяем трещиностойкость (это расчет по второму предельному состоянию).

Точно так же нужно действовать и в случае расчета ленточного фундамента: имея вылет подошвы в одну сторону от стены и давление под этой подошвой, мы рассчитываем консольную плиту (с защемлением на опоре), длина консоли равна вылету подошвы, ширина берется для удобства расчета равной одному метру, нагрузка на консоль равна давлению под подошвой фундамента. Находим максимальный момент и поперечную силу в консоли и выполняем расчет по первому и второму предельному состоянию – точно так, как описано в расчете изгибаемых элементов.

Таким образом, при расчете фундаментов мы проходим два случая расчета по предельным состояниям первой и второй группы: сначала при расчете основания, затем при расчете непосредственно фундамента.

Выводы . При любом расчете важно соблюсти последовательность:

1) Сбор нагрузок.

2) Выбор расчетной схемы.

3) Определение усилий N, M и Q.

4) Расчет элемента по первому предельному состоянию (по прочности и устойчивости).

5) Расчет элемента по второму предельному состоянию (по деформативности и трещиностойкости).

class="eliadunit">

Комментарии

0 #15 Иринa 17.10.2018 19:39

Цитата:

Я теж знаю, що раніше прогини рахувались по нормативним навантаженням

И Вы тоже ошибаетесь.
Вот цитата из СНиП 85го года:
Цитата:

Расчетное значение нагрузки следует определять как произведение ее нормативного значения на коэффициент надежности по нагрузке СНиП 2.01.07-85* Нагрузки и воздействия (с Изменениями N 1, 2), соответствующий рассматриваемому предельному состоянию и принимаемый: а)* при расчете на прочность и устойчивость - в соответствии с пп.2.2, 3.4, 3.7, 3.11, 4.8, 6.11, 7.3 и 8.7; б) при расчете на выносливость - равным единице; в) в расчетах по деформациям - равным единице, если в нормах проектирования конструкций и оснований не установлены другие значения; г) при расчете по другим видам предельных состояний - по нормам проектирования конструкций и оснований.

Цитата:

От я і намагаюсь розібратись чи можна відповідно до оновлених норм користуватись нормтивними (характеристични ми) значеннями навантажень чи, все таки, необхідн окористуватись розрахунковими значеннями, але без коефіцієнтів для СС1...СС3. Якщо це не так, то де ще це прописано.

Вам, как и русскоязычному Валерию (если вы разные Валерии) рекомендую почитать статью

Расчет на прочность может производиться по одной из двух методик - по предельному состоянию, или по допускаемым напряжениям. Методика расчета по допускаемым напряжениям принята при расчете машиностроительных конструкций, и основы ее использования приведены в курсе «Сопротивления материалов». При расчете строительных конструкций принята методика расчета по предельному состоянию, более совершенная, чем методика расчета по допускаемым напряжениям.

Предельное напряженное состояние – состояние, когда в точке возникает напряженное состояние, ведущее к возникновению нового процесса. Например, к развитию пластической деформации, к образованию трещины и т.д. Различные ПНС возникают при различных видах нагружения.

Предельное состояние – такое состояние, при котором конструкция теряет работоспособность или ее состояние становится нежелательной. Усилия вызывающие предельное состояние называются предельными

Следует различать предельные состояния и предельные напряженные состояния. Не всегда эти понятия совпадают. Примеры:

Увеличение напряжений при изгибе балки до предела текучести приводит достижению ПНС в точках максимально удаленных от нейтральной линии. Дальнейшее увеличение нагрузки приводит к достижению напряжениями уровня предела текучести во всем сечении – предельного состояния в сечении, в конструкции происходит качественные изменения, перемещения резко увеличиваются, поскольку в наиболее нагруженном сечении образуется пластический шарнир.

Увеличение напряжений при растяжении приводит к последовательному появлению следующих предельных напряженных состояний: а) начала равномерной пластической деформации; б) образования шейки; в) разрушения.

Метод расчета по предельным состояниям

В соответствии с ГОСТ 27751-88 "Надежность строительных конструкций и оснований. Основные положения по расчету" предельные состояния подразделяются на две группы:

    первая группа включает предельные состояния, которые ведут к полной непригодности к эксплуатации конструкций, оснований (зданий или сооружений в целом) или к полной (частичной) потере несущей способности зданий и сооружений в целом;

    вторая группа включает предельные состояния, затрудняющие нормальную эксплуатацию конструкций (оснований) или уменьшающие долговечность зданий (сооружений) по сравнению с предусматриваемым сроком службы.

Предельные состояния первой группы характеризуются:

    разрушением любого характера (например, пластическим, хрупким, усталостным);

    потерей устойчивости формы, приводящей к полной непригодности к эксплуатации;

    потерей устойчивости положения;

    переходом в изменяемую систему;

    качественным изменением конфигурации;

    другими явлениями, при которых возникает необходимость прекращения эксплуатации (например, чрезмерными деформациями в результате ползучести, пластичности, сдвига в соединениях, раскрытия трещин, а также образованием трещин).

Предельные состояния второй группы характеризуются:

    достижением предельных деформаций конструкции (например, предельных прогибов, поворотов) или предельных деформаций основания;

    достижением предельных уровней колебаний конструкций или оснований;

    образованием трещин;

    достижением предельных раскрытий или длин трещин;

    потерей устойчивости формы, приводящей к затруднению нормальной эксплуатации;

    другими явлениями, при которых возникает необходимость временного ограничения эксплуатации здания или сооружения из-за неприемлемого снижения их срока службы (например, коррозионные повреждения).

Первое предельное состояние для растянутых и сжатых элементов выражается соотношением:

где
– расчетное сопротивление по пределу текучести;

– предел текучести;

– коэффициент надежности по материалу (γ С >1);

– расчетное сопротивление по пределу прочности;

– предел прочности;

– коэффициент условий работы (γ С <1);

-коэффициент надежности для элементов конструкций, рассчитываемых на прочность с использованием расчетных сопротивленийR u ;

– площадь поперечного сечения растянутого (сжатого) элемента.

Для изгибаемых элементов:

Формально величину в правой части неравенств (2 .0), (2 .0), (2 .0), мы можем принять за допускаемое напряжение, приемы расчета по предельному состоянию и допускаемым напряжениям совпадают, однако при расчете по предельным состояниям общий и неизменный коэффициент запаса прочности заменяется несколькими переменными величинами. Это позволяет при расчете по предельному состоянию проектировать эксплуатационно равнопрочные конструкции.

При определении расчетных сопротивлений для сварных швов R W учитываются следующее: основной материал сварной конструкции, вспомогательные материалы используемые при сварке (марки покрытых электродов, электродных проволок), наличие либо отсутствие физических методов контроля сварного шва.