Тепловой счетчик – устройство по учету потребленного теплоносителя, в настоящее время очень выгоден, так как позволяет экономить средства благодаря оплате только за потребленное тепло, исключая переплату.

Важным моментом является правильный выбор вида прибора в зависимости от места установки и конструктивных особенностей теплосети, а также заключение договора с обслуживающей организацией, которая будет контролировать техническое состояние устройства.

Существует множество моделей тепловых счетчиков, отличающихся устройством и размерами, но принцип того, как работает счетчик отопления, остался такой же, как и на простейшем приборе, который измеряет температуру и расход воды на входе и выходе трубопровода объекта теплоснабжения. Различия проявляются только в инженерных подходах к решению данного вопроса.

Работа теплосчетчика построена на принципе вычисления количества теплоты с применением данных, взятых от датчика расхода теплоносителя и пары датчиков температуры. Происходит замер количества воды, прошедшего через отопительную систему, а также разница температур на входе и выходе.

Количество теплоты вычисляют произведением расхода воды, прошедшей по отопительной системе, и разницей температур поступившего и вышедшего теплоносителя, что выражается формулой

Q = G * (t 1 -t 2) , гКал/ч, в которой:

  • G – массовый расход воды, т/ч;
  • T 1 , 2 – температурные показатели воды на входе и выходе из системы, о С.

Все данные с датчиков поступают на вычислитель, который после их обработки определяет значение потребления тепла и записывает результат в архив. Значение потребленного тепла отображается на дисплее прибора и может быть снято с любой момент.

Что влияет на точность теплосчетчика

Techem compact V

Теплосчетчик, как и любой точный прибор, при измерении потребленного тепла имеет определенную суммарную погрешность, которая складывается их погрешностей термодатчиков, расходомера и вычислителя. В квартирном учете используют приборы, имеющие допустимую погрешность 6-10%. Реальный показатель погрешности может превышать базовый, зависящий от технических характеристик комплектующих элементов.

Увеличение показателя обуславливают следующие факторы:

  1. Амплитуда входящей и выходящей температуры теплоносителя, которая меньше 30 о С .
  2. Нарушения при монтаже относительно требований изготовителя (при установке нелицензионной организацией, производитель снимает с него гарантийные обязательства).
  3. Не надлежащее качество труб, жесткая вода, используемая в теплоносителе, и наличие в нем механических примесей.
  4. При расходе теплоносителя ниже минимального значения, обозначенного в технических характеристиках устройства.

В чем измеряется потребленное тепло

Расчет тарифа потребленного тепла принято производить в гигакалориях. Единица измерения относится к внесистемным, и традиционно используется со времен существования СССР. Приборы, произведенные в Европе, вычисляют потребленное тепло в ГигаДжоулях (система СИ), или общепринятой международной внесистемной единице кВт*ч (kWh) .

Виды тепловых счетчиков

Все доступные к приобретению счетчики отопления делятся на следующие виды:

  • Тахометрический или механический

Производит измерение количества прошедшего через сечение трубы теплоносителя при помощи вращающейся детали. Активная часть аппарата может быть винтовая, турбинная или в виде крыльчатки.
Приборы доступны по стоимости и просты в использовании. Слабая сторона подобных устройств – чувствительность к загрязнениям и оседанию внутри механизма грязи, ржавчины, и к гидроударам. Для этого в конструкции предусмотрен специальный магнито-сетчатый фильтр. Также приборы не способны хранить собранные за сутки данные.

  • Ультразвуковой

Чаще применяется в качестве общего счетчика многоквартирного дома. Имеет разновидности:

  1. частотный,
  2. временной,
  3. доплеровский,
  4. корреляционный.
    Работает по принципу генерации ультразвука, проходящего через воду.

Сигнал генерируется передатчиком и улавливается приемником после прохождения через толщу воды. Гарантирует высокую точность измерения только при достаточной чистоте теплоносителя.

  • Электромагнитный

Отличается высокой точностью показаний и стоимостью. Работа устройства основана на принципе прохождения через поток теплоносителя магнитного поля, которое реагирует на его состояние. Аппарат нуждается в периодическом обслуживании и очистке. Состоит из первичного преобразователя, электронного блока и термодатчиков.

  • Вихревой

Работает по принципу измерения количества и скорости вихрей. Не чувствителен к засорениям, но реагирует на появление в системе воздуха. Прибор устанавливают в горизонтальном положении между двумя трубами.

Как правильно передать показания

Квартирный измеритель тепла функционально намного проще современного мобильного телефона, но у пользователей периодически возникают непонимания процесса снятия и отправки показаний дисплея.

Для предотвращения подобных ситуаций, перед началом процедуры снятия и передачи показаний, рекомендуется внимательно изучить его паспорт, в котором даны ответы на большинство вопросов, связанных с характеристиками и обслуживанием устройства.

В зависимости от конструктивных особенностей прибора, съем данных производят следующими способами:

  1. С жидкокристаллического дисплея путем визуальной фиксации показаний с различных разделов меню, которые переключаются кнопкой.
  2. ОРТО передатчик , который включают в базовую комплектацию европейских приборов. Способ позволяет вывести на ПК и распечатать расширенную информацию о работе прибора.
  3. M-Bus модуль входит в поставку отдельных счетчиков с целью подключения устройства к сети централизованного сбора данных теплоснабжающими организациями. Так, группу приборов объединяют в слаботочную сеть кабелем «витая пара» и подсоединяют к концентратору, который их периодически опрашивает. После формируется отчет и доставляется в теплоснабжающую организацию, либо выводится на дисплей компьютера.
  4. Радиомодуль , входящий в поставку некоторых счетчиков, передает данные беспроводным способом, на расстояние, достигающее нескольких сотен метров. При попадании приемника в радиус действия сигнала, показания фиксируются и доставляются в теплоснабжающую организацию. Так, приемник иногда закрепляют на мусоровоз, который при следовании по маршруту ведет сбор данных с близлежащих счетчиков.

Архивирование показаний

Все электронные тепловые счетчики сохраняют в архиве данные о накопленных показателях расхода тепловой энергии, времени работы и простоя, температуры теплоносителя в прямом и обратном трубопроводе, общее время наработки и коды ошибок.

Стандартно прибор настраивается на различные режимы архивирования:

  • часовой;
  • суточный;
  • месячный;
  • годовой.

Некоторые из данных, такие как общее время наработки и коды ошибок считываются только при помощи ПК и установленного на нем специального программного обеспечения.

Передача показаний через интернет

Одним из наиболее удобных способов передачи показаний о потребленной тепловой энергии в учреждения по ее учету является передача через интернет. Его удобство и практичность заключается в возможности самостоятельно контролировать оплату и задолженность, а также отслеживать потребление тепла в разные периоды без пребывания в очередях и при затратах незначительного количества времени.

Для этого необходимо наличие персонального компьютера, подключенного к сети и адрес сайта контролирующей организации, а также логин и пароль личного кабинета, после входа в который откроется форма ввода показаний. Для предупреждения возникновения разногласий при возможном сбое или неполадках на сайте, желательно делать «скрины» экрана после ввода информации.

Поломки и ремонт

Техническое обслуживание прибора ограничивается его поддержанием в работоспособном состоянии, регулярном осмотре, недопущении причин, вызывающих преждевременный износ и поломку. Согласно п. 80 Правил коммерческого учета теплоносителя все работы по обслуживанию и контролю корректной работы счетчика осуществляет потребитель. Со стороны владельца он в особом уходе не нуждается.

Литиевый аккумулятор или батарейки, питающие прибор, не пригодны для повторного применения, и при выходе из строя утилизируются.

При обнаружении какой-либо неполадки в работе прибора учета, потребитель должен в течение 24 ч. известить об этом обслуживающую фирму и организацию, осуществляющую теплоснабжение. Вместе с прибывшим уполномоченным сотрудником составляется акт, который после передается в теплоснабжающую организацию с отчетом о потреблении тепла за соответствующий период. При несвоевременном извещении о поломке, потребление тепла рассчитывают стандартным способом.

Обслуживающая фирма предоставит услуги по ремонту или замене счетчика, а на время ремонта может установить подменный прибор. Стоимость работ по монтажу и демонтажу, ремонту и другим услугам регламентирована договором между потребителем и обслуживающей фирмой.

Регистрация ошибок

Стандартно тепловые счетчики оснащаются системой самотестирования, которая способна выявить неточности работы. Вычислитель периодически запрашивает датчики, и при их неисправности фиксирует ошибку, присваивает ей код и записывает в архив. Наиболее часто встречаются следующие регистрируемые ошибки:

  1. Неправильная установка или повреждение датчика температуры или прибора расхода.
  2. Недостаточный заряд элемента питания.
  3. Наличие воздуха в проточной части.
  4. Отсутствие расхода при наличии разницы температур в течение времени более 1 часа.

Снятие и установка счетчика отопления

До того, как установить счетчик на отопление в квартире или многоквартирный дом, приглашаются специалисты специализированных компаний, имеющих разрешительную документацию на проведение данного вида работ. Исходя из конкретной ситуации, они могут взять на себя следующие обязательства:

  1. Разработать проект.
  2. Подать документы в определенные органы с целью получения разрешений.
  3. Установить и зарегистрировать прибор. При отсутствии регистрации, оплата поставленного тепла производится согласно установленных тарифов.
  4. Провести тестовые испытания и сдать прибор в эксплуатацию.

Разработанный проект должен включать следующие моменты:

  1. Вид и устройство модели, которая предназначена для работы в конкретной системе отопления.
  2. Необходимые расчеты по тепловой нагрузке и расходу теплоносителя.
  3. Схема системы отопления с местом установки теплового счетчика.
  4. Расчет возможных потерь тепла.
  5. Расчет оплаты за поставку тепловой энергии.

Проверка счетчиков отопления

Как правило, качественный прибор поступает в точку продажи первично протестированным. Процедура осуществляется на заводе-изготовителе, свидетельством чего выступает клеймо с записью, соответствующей записи в документации. Кроме того, в документах указывают межповерочный интервал.

По истечению данного срока владельцу прибора необходимо обратиться в сервисный центр предприятия-изготовителя или в организацию, уполномоченную проверять и устанавливать счетчик. Существуют фирмы, которые после установки прибора занимаются его техобслуживанием.

Периодическое подтверждение метрологического класса, или одним словом поверка, осуществляется специализированной фирмой, имеющей проливные установки, а также разрешение, выданное органами метрологического надзора.

Срок поверки зависит от типа прибора, и в среднем составляет 4 — 5 лет.

С этой целью вызывают метролога, снимают пломбы, специалист обслуживающей организации демонтирует счетчик и отправляет на поверку. После проверки и обратного монтажа прибор опломбируют.

Счетчик на отопление – прибор для учета тепловой энергии, позволяющий экономить средства, оплачивая только фактически потребленную услугу. Несоблюдение указанных ниже условий приведет к невозможности рассчитываться за тепло согласно показаний счетчика.

Для корректной и долговременной работы устройства важно выбрать тип счетчика, который обязательно должен присутствовать в госреестре допустимых к использованию измерительных средств, а также иметь метрологическую аттестацию в соответствующей инстанции.

Устанавливается прибор предприятием, имеющим лицензию на проведение подобных работ.

к.т.н. И.П.Андреев, Докторант Самарского государственного технического университета, директор ЗАО «Точэнерго» г. Тольятти

В статье рассмотрены типичные способы искажения показаний приборов учета и методы борьбы с ними.

Одна из основных общефедеральных проблем учета и сбережения природных и энергетических ресурсов (ПЭР) при их добыче, транспортировке, переработке, хранении, продаже и применении - это искажение учета ПЭР и их потерь, особенно в денежном выражении. Проблема учета потерь ПЭР имеет ряд скрытых от широкой публики отрицательных организационно-методических особенностей, не свойственных цивилизованным системам ведения учета.

Широко распространена ненаказуемая практика материального стимулирования работников для получения дохода («экономии») путем мошеннического несанкционированного искажения показаний приборов учета.

Рассмотрим типичные способы искажения показаний приборов учета и методы борьбы с ним.

1 . Использование для изменения показаний приборов гидродинамических факторов

Один из самых доступных способов изменения показаний приборов с помощью подручных сантехнических средств - изменить эпюру скоростей и закрутку потока с помощью нестандартной уплотнительной прокладки, устанавливаемой между прямым участком на входе потока в датчик и самим датчиком.

Конструкции и материалы прокладок могут быть самыми различными. Можно уменьшить внутренний диаметр прокладки и даже выполнить винтовую нарезку с закруткой потока. Если прокладка мягкая, начнет вибрировать и вызывать пульсации потока, то теоретически это может снизить эффект, т.к. пульсации потока приводят, например, к завышению показаний турбинных счетчиков. Если прокладка имеет внутреннюю винтовую нарезку и представляет собой завихритель потока, но неправильно сконструирована, это вызовет дополнительное падение давления и возможный шум в трубопроводе. Завихритель потока можно устанавливать и перед прямым участком по потоку, особенно если по рекомендации завода-изготовителя прибора допускается небольшая длина участка (3…5 диаметров условного прохода).

Загрязненные фильтры, загрязненные внутренние поверхности трубопроводов и частично открытые задвижки (краны), установленные вблизи датчика расхода, также вызывают изменения эпюры скоростей и приводят к погрешностям. Известен случай, когда вследствие частичного засорения входного фильтра показания теплосчетчика в одной из московских гостиниц были занижены на 30%.

Другой случай зарегистрирован автором на одной из плодоовощных баз, где частичное перекрытие входной задвижки перед теплосчетчиком в теплую погоду систематически приводило к занижению показаний расхода примерно на порядок. Увеличение расхода до нижней границы рабочего диапазона, напротив, приводило к восстановлению достоверных показаний. Однако точно не выявлено, связано ли занижение показаний с эпюрой скоростей или порогом чувствительности канала измерения расхода.

Завоздушивание потока с помощью центробежного насоса, установленного в магистрали, или внешнего компрессора также вызывает изменение показаний приборов учета. Хорошо известно использование компрессоров для целей завышения показаний счетчиков на автозаправочных станциях. При этом объемный счетчик, в силу физических особенностей своей работы, отображает объем не только продукта, но и закаченного с продуктом воздуха.

В то же время завоздушивание потока с помощью насосов в пищевой промышленности, в частности, в алкогольной отрасли, приводит к неблагоприятному для производителя дисбалансу объемов, измеряемых счетчиком и определяемых по количеству заполненных через дозатор бутылок. Объяснение этому явлению достаточно простое - в воде воздух растворен в количестве до 3% по объему (при атмосферном давлении), а при сильной встряске, как из шампанского, он выделяется. Чтобы избавиться от этого явления, надо либо насос менять, либо расход уменьшать, либо счетчик устанавливать по потоку до насоса. Если устанавливается воздухосборник, то следует обязательно инструментально проконтролировать эффективность его работы. Очень часто случается, что воздухосборники, даже сложные по конструкции, не создают гасящего эффекта на пищевых продуктах.

Изменение шероховатости поверхностей. Известно, что внутренние стенки трубы и лопасти турбинки должны иметь шероховатые поверхности. Если поверхность лопастей очень гладкая, например, покрыта пленкой или отполирована, это существенно затруднит турбулизацию потока вдоль лопасти и достижение критического числа Рейнольдса. В свою очередь это существенно увеличит скольжение турбинки в эксплуатации и приведет к заметному занижению показаний счетчика (рис. 1). Для сведения, на планерах специально натягивают нить впереди крыльев, чтобы вызвать турбулизацию потока и большую, при том же угле атаки, подъемную силу.

Еще один способ - замена откалиброванных шайб и турбинок поверенных счетчиков на поддельные, с другим диаметром отверстия шайбы или другим углом винтовой нарезки турбинки. В трубе чувствительные элементы не видны, а при вскрытии практически невозможно обнаружить дефект или обвинить заказчика подделки в умышленном занижении показаний.

2. Механическое и магнитное торможение

Механическое торможение крыльчатки с помощью лески, пропущенной через кран или при помощи пробки фильтра, при организации квартирного учета водопотребления. Особенно эффективна идея с пробкой, поскольку наглядно демонстрирует некомпетентность проектировщиков и инспекторов в вопросах приборного учета.

Если сеточные фильтры в квартирах установлены по потоку впереди счетчиков воды и не опломбированы, то коммутация потоков через фильтровые пробки с помощью гибких шлангов приводит к «скручиванию» показаний счетчиков.

Магнитное торможение крыльчаток и магнитных муфт с помощью внешнего постоянного или вращающегося магнитного поля возможно, но при наличии на счетчике ферромагнитных экранов обычно неэффективно. По-видимому, требуются дополнительные исследования по данному вопросу.

Что касается вихревых счетчиков с постоянным магнитным полем возбуждения, то, как показали наши экспериментальные исследования, имеются возможности для изменения (фальсификации) регистрируемого счетчиком нижнего предела измерения по порогу чувствительности. Другими словами, если электронный регистратор вихревого счетчика настроен на 1 м 3 /ч, то с искусственной компенсацией магнитного поля срабатывание может происходить при значительно большем расходе, например, при 4 м 3 /ч. Объемы с расходом до приведенного значения будут регистрироваться по меньшей предварительной настройке. Все, что для этого требуется, - это время от времени подключать к магнитной системе вихревого датчика внешнюю электромагнитную систему из блока питания и соленоида, в качестве сердечника которого выбирается магнит вихревого датчика. При 2-трубных измерениях требуется 2 соленоида. Однако для технологических измерений вихревой датчик описанной конструкции может представлять интерес.

3. Температурные факторы

На 1-м же узле учета наших инструментальных обследований был выявлен факт занижения показаний температуры подачи теплоносителя на 20 °С, что давало крупному потребителю почти 50% занижение показаний узла теплоучета. Источником дефекта служил нестандартный термокарман (термогильза), выполненный из отрезка водопроводной трубы, который выступал над трубопроводом подачи примерно на 8 см и был доверху заполнен жидкостью. Поскольку термокарманы не подвергаются ревизии при их монтаже на трубопроводе, их особая конструкция и заполнение жидкостью сверх рабочего уровня чувствительного элемента термометра сопротивления могут также способствовать изменению показаний счетчиков.

Можно заменить термометр сопротивления на поддельный или подключить параллельно ему или линии связи резистор определенного номинала. Эффект аналогичен предыдущему, а при наличии скрытого коммутируемого резистора, сложно обнаружить причину занижения показаний при проведении инспекционных проверок.

4. Влияние асимметрии кабелей и правильности заземления

На 2-х однотипных узлах учета было обнаружено расхождение примерно на 4% показаний цифровых расходомеров и подключенных к ним вычислителей, причем, как ни странно, в одном случае показания расходомера были выше показаний вычислителя, а в другом, наоборот. Объяснить этот факт можно тем, что вместо кабеля с жилами одного сечения применялись заключенные в металлорукав асимметричные провода, а также неверно исполненным заземлением, что приводило к контурным токам соответствующего направления.

5. Неправильное пломбирование и наличие клавиатуры

Наличие мягких, особенно пластилиновых, пломб на компонентах узлов учета позволяет делать с пломб оттиски и вскрывать узлы учета с обеспечением изменения показаний любым доступным способом. Примечательно, но однажды налоговая инспекция отказала автору в изъятии образцов свинцовых пломб с исследуемого узла учета алкогольной продукции, т.к. пломбы с отрезанными концами проволоки подлежали учету. Возможно, в сдаче использованных пломб заложен смысл не только утилизации свинца, но и глубокий смысл контроля за подделками (по внешним признакам и составу).

После завершения обучения одной из тепловых инспекций автор попросил выполнить контрольное пломбирование любого узла учета с тем, чтобы нельзя было, как обещано, за 5 минут занизить показания. Каково же было всеобщее изумление, когда автор, осмотрев все пломбы, вместо планируемого способа, остановил выбор на пломбе термометра трубопровода подачи и сумел вывернуть термометр сопротивления, не нарушив пломбу. На всю операцию по занижению показаний узла учета ушло 2 минуты.

Наличие клавиатуры позволяет «зомбировать» программу вычислителя и управлять изменением показаний непосредственно с клавиатуры по только известным мошенникам командам. В первых разработках отечественных теплосчетчиков сетевое питание расходомера и вычислителя было раздельно. Отключение расходомера от сети не приводило к отключению счетчика наработки в вычислителе. До сих пор некоторые счетчики, установленные автором еще в 1994 г., работают в режиме несанкционированного занижения показаний, а теплосети компенсируют свои убытки ростом тарифов на энергию. Всякие программные ухищрения разработчиков в виде сигнализации аварий, как выяснилось, легко снимаются и никакой пользы, кроме проблем в эксплуатации, не дают.

6. Несбалансированный учет

При организации системы учета, включающей некоторое количество узлов учета, объединяемых в единую систему, наблюдается несбалансированность всей системы со значительным превышением результирующей погрешности, которую должна иметь вся система в целом. Например, ночью квартирный счетчик показывает количество израсходованной потребителем воды, а счетчик на вводе в многоквартирный жилой дом, например, вихревого типа, не реагирует на поток из-за наличия порогового значения расхода. Такой дисбаланс вроде бы «выгоден» жильцам дома, если не учитывать, что несбалансированный учет согласно стандартам на измерительные информационные системы и нормы точности является незаконным.

Выводы:

Таким образом, из всего вышесказанного напрашиваются первоочередные мероприятия по снижению неопределенности и искажения коммерческого учета ПЭР и их потерь :

Для повышения достоверности учетных измерений энергетических и природных ресурсов узлы учета должны проходить государственную поверку органами Госстандарта РФ непосредственно в местах эксплуатации без нарушения целостности узлов учета.

На стратегически важных магистралях транспортирования природных и энергетических ресурсов помимо метрологического контроля должен осуществляться контроль налоговый (балансный) с использованием портативных калибраторов, средств связи, компьютеров, методов статистической обработки и других инструментов выявления сверхнормативных потерь.

Контроль узлов учета, своеобразно толкуемый и фактически осуществляемый энергетиками, незаконен, приносит огромные ежегодные убытки потребителям ресурсов и казне в виде недобора продуктов, налогов, таможенных сборов и наличия потерь (до 100 млрд $ ежегодно), мешает техническому прогрессу. Незаконные действия целесообразно из Правил учета и повседневной практики исключить и привести в соответствие со стандартами и основами метрологии измерительных информационных систем.

Необходимо импортировать к узлам учета известные, в первую очередь налоговые и таможенные, требования по защите грузов и коммерческой информации от несанкционированного доступа. Специфичные методы и средства защиты должны пройти сертификационные испытания.

Литература

1.Андреев И. П. Типичные ошибки организации коммерческого теплоучета. Энергетическая эффективность, ЦЭНЭФ, 1995, № 9.

2.Андреев И. П. Инструментальное обследование и выявление дефектов городских систем тепловодоучета. Энергетическая эффективность, ЦЭНЭФ,1998, №21, с. 20-22.

3.Андреев И.П. О метрологическом обеспечении уз-

лов учета энергоресурсов. Доклад на НТК Госстандарта РФ, протокол № 10 от27.06.00 г.

4.Андреев И. П. Портативные калибраторы для отбраковки, наладки, оперативного и метрологического контроля, сертификации систем товарного трубопроводного учета энергетических и природных ресурсов и оказания услуг по устранению дефектов учета. Проект, победивший по итогам Российского конкурса инновационных проектов «Наука-технология-производство»

В настоящее время практически во всех российских регионах начисления за коммунальные услуги происходят по одинаковому сценарию: жилец передаёт в управляющую компанию показания со своих приборов учёта, а УК снимает показания с общедомовых счётчиков и вычисляет разницу в показаниях между ними и индивидуальными приборами учёта.

Если данная разница не больше нормативов для мест общего пользования (лестничных площадок, коридоров, подвальных помещений и пр.), она пропорционально делится между всеми жильцами. В противном случае, разницу доплачивает управляющая компания из своего дохода. Если жилец своевременно не подал в УК показания со своих приборов учёта, либо у его приборов закончился межповерочный интервал, то первые два месяца управляющая компания начисляет оплату за потреблённые ресурсы, учитывая средний расход за предыдущий период. В дальнейшем, УК начисляет оплату, исходя из нормативов для конкретного региона.

Как правило, нормативы значительно превышают реальную потребность в ресурсах. Например, в средней полосе России в современных энергоэффективных домах реальное потребление тепла в 2-2,5 раза меньше, чем по нормативу . Соответственно, своевременная передача показаний, прежде всего, в интересах самого жильца.

Процесс снятия показаний с прибора учета тепла описан в . В этой статье мы немного подробнее расскажем о том, как снять показания счетчика отопления SANEXT.

Принцип работы теплосчетчика

Сначала немного о принципе работы теплосчетчика. Теплосчётчик SANEXT предназначен для работы в горизонтальных системах отопления. В прямой или обратный трубопровод устанавливается расходомер со встроенным электронным модулем - теплосчетчиком, а в подающий и обратный трубопроводы встраиваются датчики температуры. Комплекс приборов называется узлом учета тепловой энергии.

Теплоносителем является вода или смесь на основе гликоля, которая содержит в себе определенное количество теплоты. Учитывая расход теплоносителя в трубопроводе расходомером и разность температур с помощью датчиков, квартирный теплосчетчик сам вычисляет потребление тепла, учитывая при этом плотность и массу теплоносителя, приходящуюся на единицу объёма в зависимости от его температуры. Расход тепловой энергии измеряется в гигакалориях.

На дисплее теплосчетчика отображаются значения контролируемых параметров, их размерность, а также информация о настройках и состоянии счётчика. Кнопкой управления выбирается отображаемый параметр. Дисплей автоматически возвращается в режим сна через 10 минут после последней активации.

Как снимать показания теплосчетчика

Короткое нажатие кнопки активирует работу дисплея в режиме меню R 1 . Нажимая клавишу, вы можете просматривать элементы меню R1 по одному в следующем порядке:

  1. Накопленный расход тепла;
  2. Температура воды в подающем трубопроводе;
  3. Температура воды в обратном трубопроводе;
  4. Разница температур в трубопроводах;
  5. Мгновенный расход;
  6. Мгновенная мощность;
  7. Накопленный расход тепла;
  8. Время;
  9. Накопленное количество часов;
  10. Номер счетчика;
  11. Тип счетчика;
  12. Номер программного обеспечения;
  13. Адрес подключения диспетчеризации;

Таким образом, пошаговая инструкция как снять показания счетчика отопления SANEXT состоит из трех простых шагов:

  1. Активировать работу теплосчетчика коротким нажатием кнопки;
  2. Первый отобразившийся параметр – накопленный расход тепловой энергии, который измеряется в Гкал;
  3. Списать показания с дисплея (ультразвуковой теплосчетчик SANEXT отображает 3 знака после запятой);

Длительное нажатие кнопки в течение 3 секунд открывает доступ к другим меню. Меню R 2 показывает архивные значения. Глубина архива составляет 18 месяцев. Для входа в значения предыдущего месяца требуется короткое нажатие кнопки. После этого на дисплее автоматически меняются значения в следующем порядке:

  1. Месяц;
  2. Ежемесячный объем;
  3. Ежемесячный расход тепла;

Каждое последующее короткое нажатие кнопки выдаёт показания за предыдущий месяц отображаемого на дисплее.

Меню R4 – режим калибровки. Содержание этого меню аналогично меню R1 , но используется только для настройки прибора в соответствии с эталонными образцами для исключения погрешности показаний.

Для того чтобы вернутся обратно в главное меню R1 , удерживайте кнопку, пока на дисплее в верхнем левом углу не загорится значение R1.

Для лучшего восприятия информации дисплей теплосчетчика помимо цифр содержит графические символы, как например, при отображении температуры теплоносителя в подающем трубопроводе.

Диспетчеризация теплосчетчика

К сожалению, описанный способ снятия показаний теплосчетчиков имеет ряд недостатков. Во-первых, он требует времени и регулярного присутствия жильца для снятия показаний. То есть, в случае командировок или длительного отпуска, жильцам, не предоставившим вовремя показания теплосчетчиков, оплата за отопление будет начисляться по нормативам. Во-вторых, неисправность тепловычислителя можно обнаружить только при непосредственном осмотре узла учета. В случае механических повреждений или внештатных ситуаций в системе отопления жильцам придется оплатить не за реальное потребление тепла, а за показания некорректно работающего прибора. Гораздо удобнее снимать показания теплосчетчика посредством систем телеметрии (диспетчеризации) .

Ассортимент теплосчетчиков SANEXT поддерживает все возможные интерфейсы для подключения к любой системе телеметрии, как проводной, так и беспроводной. Это автоматизирует процесс передачи показаний и позволяет постоянно держать на контроле всю систему отопления многоквартирного дома. Можно отправлять данные в информационную систему ГИС ЖКХ или напрямую теплоснабжающей организации, минуя управляющую компанию. Эти решения уже реализованы на многих жилых объектах.

Теперь вы знаете, как снимать показания счетчика отопления SANEXT в соответствии с правилами эксплуатации данного прибора.

Если у вас остались вопросы, то пишите, пожалуйста, в комментариях.

журнал "Новости теплоснабжения", № 6 (34), июнь, 2003, С. 34 - 37, http://www.ntsn.ru/

В.П. Каргапольцев, начальник лаборатории теплоэнергоресурсов Кировского Центра стандартизации и метрологии

Автор надеется на то, что статья привлечет внимание специалистов водо- и энергоснабжающих организаций, позволит разработать методы борьбы с хищениями тепла и воды. Не рекомендуется принимать изложенную ниже информацию как руководство к действию и пытаться повторить способы снижения платежей, так как это является нарушением закона.

В последнее десятилетие проводится массовое внедрение приборов учета воды и тепла, разрабатываются нормативные документы по учету. Общая координации действий в этой сфере отсутствует, поэтому документы очень часто противоречат друг другу, имеют много слабых мест. "Правила учета тепловой энергии и теплоносителя" утверждены только в 1995 году, но уже сейчас многие специалисты признают, что они морально устарели. ГОСТ на теплосчетчики принять только в 2000 году, но и сейчас заложенные в нем требования к испытаниям не выполняются. В частности, приборы не проходят испытания на электромагнитную совместимость, хотя качество электроэнергии в наших коммунальных сетях оставляет желать лучшего. Ни один из испытательных центров не проводит предусмотренные ГОСТом испытания по обеспечению невозможности несанкционированного доступа в память приборов.

Нужно учитывать также и подход отечественных специалистов к самой проблеме энергосбережения. После установки прибора учета потребитель задумывается - как снизить платежи за тепло и воду? Казалось бы, ответ прост и логичен - надо экономить. Однако на практике все оказывается не так. Потребитель часто решает проблему более простым способом - манипуляциями с прибором учета. А поскольку теплосчетчик значительно более сложен по устройству, алгоритмам работы, монтажу, эксплуатации, чем известный всем, например, электросчетчик, то и возможности фальсификации здесь намного больше. Доказать же, что потребитель сознательно искажает показания приборов очень сложно по ряду причин.

Каким образом потребители корректируют показания приборов? Начнем с водосчетчиков, и не будем касаться таких "древних" методов, как манипуляции с пломбами.

Способ, применяемый в основном владельцами приусадебных участков для снижения затрат на воду для полива. Потребитель решает установить водосчетчики. Он идет в магазин и покупает самый дешевый и ненадежный (по отзывам) водосчетчик, согласует с "Водоканалом", монтирует его и ставит на учет. В соответствии с отечественным ГОСТом минимальный расход, фиксируемый водосчетчиком, составляет 30 литров в час. Есть еще порог чувствительности, на котором счетчик должен начать вращаться, но при существующем качестве водопроводной воды уже через две-три недели счетчик кое-как вращается на минимальном расходе. Потребитель открывает краны так, чтобы расход составлял менее 30 литров в час. При этом счетчик вообще не фиксирует разбор воды, то есть, установив прибор, потребитель получает возможность законно не платить за воду. Установив расход, например, в 20 литров в час, потребитель получит за сутки 480 литров чистой питьевой воды абсолютно бесплатно. Социальная норма в городах России в среднем составляет около 300 литров в сутки на человека. Понятно, что в городской квартире далеко не каждый будет производить такие манипуляции. Но способ активно применяется теми, кто живет в пригороде, поселках с централизованным водоснабжением. Вода с малым расходом постоянно течет в накопительный бак большой емкости, а затем используется для полива.

Другой, чуть более сложный способ. Он уже требует определенных затрат, но более удобен для городской квартиры. При монтаже счетчика требуется установка дополнительного оборудования. Если смотреть по ходу воды, то это: шаровый кран, сетчатый фильтр с пробкой, водосчетчик, шаровый кран. Монтажные сгоны должны пломбироваться. Однако остается сетчатый фильтр, который пломбировать нельзя. При периодическом его забивании жилец или сам выкручивает гайку, достает и промывает сетчатый стакан, или вызывает слесаря из ЖКО. В наших условиях эта процедура достаточно частая. Потребитель покупает в хозяйственном магазине гибкий шланг (подводку), вкручивает его на место снятой сливной гайки фильтра, и получает воду в обход счетчика. Если придет инспектор "Водоканала" для проверки счетчика, то его достаточно подержать за дверью пару минут, за это время вывернуть гайку шланга и вкрутить пробку.

Следующий способ для той же конструкции узла учета воды более прост в эксплуатации. К стакану сетчатого фильтра привязывается обрезок тонкой проволоки и пропускается в трубу по ходу воды. Проволока тормозит вращение тур-бинки счетчика и показания значительно занижаются.

Большинство применяемых сейчас водосчетчиков - так называемые "сухоходы". Они состоят из двух частей: турбинка, вращающаяся в воде и счетный механизм, отделенный от турбинки герметичной перегородкой. На турбинке крепятся один или несколько маленьких магнитов. Вода вращает крыльчатку, под воздействием вращения магнитов за герметичной перегородкой вращается металлическое кольцо, вращение кольца передается на счетный механизм. Суть следующего способа занижения показаний - торможение крыльчатки путем установки наружных магнитов, положение которых определяется опытным путем.

После знакомства со всеми этими способами несколько по-иному начинаешь смотреть на положительные заключения различных организации по результатам внедрения водосчетчиков. Понятно, что если установить в жилом квартале квартирные счетчики воды, то сумма их показаний за месяц будет меньше расчетной величины, определенной по социальной норме (300 литров в сутки на человека). Это не подвергается сомнению. Однако ни в одном из отчетов, ни в одной из многочисленных статей автор не встречал упоминания о том, что где-то после установки квартирных водосчетчиков уменьшилось общее водопотребление города, района, поселка. На практике одновременно с внедрением водосчетчиков растет небаланс между водозабором и водоразбором по приборам учета. Указанные выше манипуляции с приборами списываются на потери в распределительных сетях.

Более разнообразны способы корректировки показаний теплосчетчиков. Теплосчетчик состоит из трех основных блоков - расходомер, термопреобразователи, тепловычислитель, и корректировки возможно вносить, манипулируя любым из блоков.

Тахометрические расходомеры теплосчетчиков имеют те же варианты корректировки, что и названные выше для водосчетчиков.

Электромагнитный расходомер конструктивно состоит из двух магнитных катушек, установленных под и над трубой, двух измерительных электродов, расположенных горизонтально. На катушки подается переменное напряжение известной частоты и формы. С электродов снимается сигнал, пропорциональный расходу жидкости. Для корректировки показаний прибора снаружи датчика расхода устанавливаются дополнительные магнитные катушки, напряжение на которые подается в противофазе напряжению катушек прибора. Таким образом подавляется полезный сигнал и занижаются показания. Этот способ требует определенной квалификации исполнителя. Вихревой расходомер конструктивно состоит из треугольной призмы, вертикально установленной в трубе, измерительного электрода, вставленного в трубу далее по течению жидкости, и установленного снаружи трубы постоянного магнита. Манипуляции сводятся к искажению магнитного поля постоянного магнита расходомера. Для этого применяют набор постоянных магнитов. Их расположение выбирают опытным путем. Другой способ искажения показаний вихревых расходомеров - завихрение и закручивание потока воды, например, смещением при монтаже прокладки между фланцами прибора и трубопровода, что тоже занижает показания.

Манипуляции с термопреобразователями. Термопреобразователи монтируются в прямой и трубопроводы и подключаются линиями связи к тепловычислителю. Очень простой и эффективный способ занижения показаний теплосчетчика - подключение параллельно термопреобразователю, установленному на подающий трубопровод, резистора определенного номинала. Такое включение занижает температуру подаваемой из теплосети воды, причем величина снижения регулируется подбором номинала резистора. Длина линий связи может составлять десятки метров, поэтому обнаружить подключение практически невозможно.

Все указанные варианты не идут ни в какое сравнение с возможностями корректировки показаний тепловычислителя. В одном из номеров журнала "Законодательная и прикладная метрология" автор встретил очень интересное изрече-ние: "цифровые устройства позволяют обманывать с невиданными ранее возможностями". Это очень точное описание ситуации в теплоучете.

В зарубежных системах учета теплосчетчик определяет за отчетный период (месяц) 2 величины: - количество потребленной тепловой энергии и количество прошедшего через систему отопления теплоносителя. Регистрация других величин возможна, но не обязательна. Российские "Правила учета тепловой энергии и теплоносителя" 1995 года требуют в качестве отчетных за месяц величин: - количество потребленной тепловой энергии (нарастающим итогом и за каждый час в течение месяца), - количество полученного теплоносителя и возвращенного в сеть (нарастающим итогом и за каждый час в течение месяца), - температуры в подающем и обратном трубопроводах (нарастающим итогом и за каждый час в течение месяца), - в ряде случаев давление в прямом и обратном трубопроводах (нарастающим итогом и за каждый час в течение месяца). По мнению автора, в "Правилах..." необоснованно смешаны понятия коммерческого учета потребляемой энергии и технологического контроля за режимами работы теплосетей. В соответствии с требованиями "Правил..." потребитель покупает за свой счет прибор для учета собственного теплопотребления и одновременно прибор контроля технологических характеристик теплосетей. Отсюда и высокие цены на теплосчетчик.

Требование измерения большого количества величин и хранения в приборе больших архивов данных возможно реализовать только на базе цифровых приборов. И за прошедшие 7 лет в Госреестр средств измерений РФ внесено порядка 400 теплосчетчиков и расходомеров, большинство из них цифровые. В 2000 году вышел ГОСТ Р 51649-2000 "Теплосчетчики для водяных систем теплоснабжения. Общие технические условия". Не случайно в ГОСТ внесено следующее требование "программное обеспечение теплосчетчиков должно обеспечивать защиту от несанкционированного вмешательства в условиях эксплуатации". В самом деле, теплосчетчик - это прибор коммерческого учета, некий аналог кассового аппарата. Всеми признано, что кассовый аппарат должен иметь фискальную память, защищенную от несанкционированного доступа. Осознание необходимости защиты памяти теплосчетчика пришло с большим опозданием. До сих пор ни один из государственных центров испытаний средств измерений (ГЦИ СИ) такие испытания не освоил, хотя новые приборы постоянно вносятся в Госреестр СИ РФ.

Что происходит на практике? Теплосчетчик, как цифровой прибор, имеет соответствующее программное обеспечение. Потребитель тепловой энергии обычно вместе с теплосчетчиком покупает и программное обеспечение, при помощи которого он может вывести данные из памяти прибора через интерфейс на компьютер, в локальную сеть, на принтер для отчета и так далее. Это потребительские программы. На предприятии-изготовителе существует, кроме того, калибровочное программное обеспечение. Оно используется для настройки прибора при выходе из производства, а также при корректировке калибровочных коэффициентов, когда прибор не прошел очередную поверку. Понятно, что калибровочные программы должны быть недоступны широкому кругу лиц и находиться только у производителя и лицензированных ремонтных предприятий.

К сожалению, сейчас сложилась иная ситуация. Изготовители приборов в большинстве случаев передают калибровочные программы внедренческим предприятиям. Почему? Качество приборов оставляет желать лучшего, в процессе эксплуатации характеристики датчиков приборов "плывут", появляются расхождения показаний расходомеров в подающем и обратном трубопроводах, "зависает" программное обеспечение и так далее. У энергоснабжающей организации появляются сомнения в достоверности показаний приборов. И тогда внедренческая фирма или сам потребитель обращаются на завод-изготовитель с предложением отремонтировать гарантийный прибор. Изготовитель не заинтересован в том, чтобы его прибор имел плохую репутацию в регионе, где он эксплуатируется. Но одновременно ему не выгодно командировать специалиста из-за одного прибора. А поскольку приборы не самого высокого качества и уровень технологии производства оставляет желать лучшего, то таких претензий от потребителей из разных городов немало. Предприятие-изготовитель по электронной почте направляет внедренческой (сервисной) фирме калибровочную программу. Представитель внедренческой фирмы загружает программу в ноутбук, приходит на объект, где установлен теплосчетчик, подключает ноутбук к штатному интерфейсному разъему теплосчетчика, снимает архивные данные, пересчитывает калибровочные коэффициенты, вводит их в память теплосчетчика. Интерфейсный разъем не пломбируется энергоснабжающей организацией, потому что он предназначен для съема архива и ежемесячного отчета. Внедренческая (сервисная) фирма также заинтересована в наличии такой программы, чтобы у потребителей, с которыми она заключила договоры на сервисное обслуживание, не было претензий к приборам. Потребитель тепловой энергии заинтересован в сотрудничестве с сервисной фирмой, имеющей калибровочную программу для исключения конфликтов с энергоснабжающей организацией при сбоях прибора и, возможно, для решения вопросов "практического энергосбережения". Таким образом, и изготовители приборов, и внедренческие (сервисные) фирмы, и потребители тепла заинтересованы в широком распространении калибровочных программ. Понятно, каким будет результат при таком единстве интересов. Даже если прибор импортный и фирменную калибровочную программу получить невозможно, программное обеспечение теплосчетчика взламывается, составляется собственная калибровочная программа (пример - хорошо известный в России и Белоруссии электромагнитный теплосчетчик одной из западноевропейских фирм).

У некоторых цифровых теплосчетчиков (в частности, производства предприятий, находящихся на территории государств бывшего СССР) доступ в память возможен даже с клавиатуры самого прибора. Для входа в калибровочную программу достаточно одновременно нажать некоторую комбинацию клавиш на лицевой панели прибора. У ультразвуковых теплосчетчиков и расходомеров из известного поволжского города для входа в калибровочную программу необходимо к известному месту корпуса прибора поднести магнитный ключ.

Автор поднимал вопрос несанкционированного доступа на областном совещании метрологов Кировской области еще весной 2001 года, однако тогда никто, даже теплосети, не проявил заинтересованности. В апреле 2003 г. в Санкт-Петербурге состоялась 17-я международная конференция "Коммерческий учет энергоносителей". Теме несанкционированного доступа был посвящен доклад "О запрещенных методах метрологического обслуживания коммерческих узлов учета тепловой энергии" председателя Оргкомитета конференции, известного специалиста в области учета тепловой энергии заместителя главного метролога теплосетей "Ленэнерго" А. Г. Лупея. В докладе приведен выявленный методами математической статистики факт несанкционированной корректировки калибро-вочных коэффициентов наладчиком сервисной фирмой через интерфейсный разъ-ем. Как сказано в докладе, "наладчик быстро, незаметно, без хлопот "отремонтировал" расходомер прямо на месте эксплуатации с помощью "проливного стенда", именуемого переносным компьютером типа "ноутбук".

По данным автора, практически все типы цифровых теплосчетчиков, применяемых в Кирове, могут быть перенастроены без снятия пломб через интерфейс или клавиатуру при помощи калибровочных программ или известных кодов доступа. Однако доказать факт несанкционированного доступа, а особенно его преднамеренный характер, практически невозможно. 3.10.01.теплосетями ОАО "Кировэнерго" официально заактирован факт несанкционированного доступа в память теплосчетчика. Товарищество собственников жилья (ТСЖ) приобрело теплосчетчик, смонтировало, сдало на учет теплосетям ОАО "Кировэнерго". Летом из-за отключенного отопления тепло расходовалось только для целей горячего водоснабжения, поэтому расход теплоносителя и перепад температур опустились ниже нижнего уровня диапазонов измерений. Прибор начал фиксировать в памяти коды ошибок. Теплосети неоднократно по итогам отчетных периодов направляли потребителю предписание - прибор не соответствует характеристике объекта, необходима замена на меньший типоразмер. Потребитель обратился к продавцу прибора с просьбой решить эту проблему. В отчете за следующий месяц теплосети обнаружили, что имело место несанкционированное вмешательство в работу теплосчетчика, из архивной памяти прибора исчезли коды ошибок, изменился нижний уровень диапазона расходов. Теплосети сняли прибор с учета, составили акт о несанкционированном доступе, который признал и подписал представитель потребителя (ТСЖ). Прибор был направлен на метрологическую экспертизу. Экспертиза проводилась на той же проливной установке, что и поверка прибора из производства. По результатам контрольной поверки было выявлено, при расходе теплоносителя 0,5 куб.м/час погрешность прибора составляет "- 9,6%".

  • скорректировать отечественные стандарты с части снижения минимального расхода до 6 литров в час, что приведет их в соответствие европейским стандартам;
  • разработать и внедрить в практику проливные поверочные установки с минимальным воспроизводимым расходом 6 литров в час;
  • разработать для персонала сбытовых подразделений водо- и теплоснабжающих организаций, предприятий Госэнергонадзора методики выявления фальсификаций при учете водо- и теплопотребления;
  • считать обязательным при испытаниях для целей утверждения типа теплосчетчиков и расходомеров испытания по обеспечению защиты от несанкционированного вмешательства в условиях эксплуатации.

При заполненном трубопроводе и закрытой запорной арматуре (отображаемый расход при этом должен быть равен 0) отображаются значения g1.

Вероятная причина:

1. По трубопроводу, на котором установлен теплосчетчик с первичный преобразователем расхода, течет электрический ток.

2. Неисправность запорной арматуры

1. Поскольку тепловые сети не предназначены для передачи электроэнергии, найти и устранить источник электрического тока.

2. Пустить ток в обвод участка, на котором установлен теплосчетчик, следующим образом:

Заизолировать болты фланцев. Для приборов с резьбовым соединение - врезать фланцы на близлежащих участках трубопроводов либо воспользоваться фланцами примыкающей арматуры;

Рис. 1. Схема заизолирования болтов фланцев

Произвести электрическое шунтирование участка трубопровода на котором установлен теплосчетчик шунтирующей шиной. Использовать стальную проволоку диаметром 6...8 мм. Способ соединения - сварка.

Рис. 2. Схема электрического шунтирования участка трубопровода.

При предполагаемом бесперебойном расходе теплоносителя наблюдается нестабильность показаний g1 (g2).

Наиболее вероятные причины :

Инородное тело попало в канал или подключенного к нему первичного преобразователя расхода.

Методы устранения :

Произвести демонтаж ППР (первичного преобразователя расхода). Возможно установить фильтр, если проблема повторяется.

При ожидаемом соотношении расходов в подающем и обратном трубопроводах, наблюдается разница показаний между g1 и g2. При этом (g1-g2)/g1*100 > 2%

Наиболее вероятные причины :

1.Инородное тело попало в канал или подключенного к нему первичного преобразователя расхода.

2. Не выдержаны требования к прямым участкам трубопроводов.

3. Неисправность первичного преобразователя расхода.

Методы устранения :

В том случае, если не обнаружено засорения проточной части, преобразователь расхода направить для ремонта и проведения поверки

Отсутствие сигнала от преобразователя расхода канала V1.

Наиболее вероятные причины :

1.Направление потока в трубопроводе не соответствует направлению стрелки, нанесенной на корпусе первичного преобразователя

2. Электропроводное инородное тело попало в канал или подключенного к нему преобразователя расход и замкнуло электроды на корпус.

Диагностик а:

1.Проанализировать соответствие направления стрелки направлению потока.

2.Демонтирвоать ППР, произвести осмотр проточной части

3.Прозвонить цепочку питания от вычислителя.

Устранение :

1. Осуществить перемонтаж ППР.

2.Очистить проточную часть и установить перед преобразователем расхода магнитно - механический фильтр.

3.Восстановить сеть при её разрыве.

Обрыв или короткое замыкание датчиков температуры канала Т1 или Т2.

Наиболее вероятные причины :

1.Датчики температуры не подключены или вместо них подключено другое устройство (преобразователь расхода).

2.Обрыв или короткое замыкание в проводах, соединяющих датчики температуры к вычислителю или неисправны датчики температуры.

Диагностика :

1.Проверить правильность подключения.

2.Отсоединить провода от датчиков температуры, измерить их сопротивление (нормальным считается сопротивление от 500 до 780 Ом). Если сопротивление выходит за упомянутые границы, это может говорить об обрыве, коротком замыкании или же о неисправности датчиков температуры.

Устранение :

1. Выполнить заново монтаж с выбранной измерительной схемой.

2. Произвести замену датчиков температуры, если неисправность нашли в них

T12.

Наиболее вероятные причины :