КИСЛОРОД, О (а. oxygen; и. Sauerstoff; ф. oxygene; и. oxigeno), — химический элемент VI группы периодической системы Менделеева , атомный номер 8, атомная масса 15,9994. В природе состоит из трёх стабильных изотопов: 16 О (99,754%), 17 О (0,0374%), 18 О (0,2039%). Открыт независимо шведским химиком К. В. Шееле (1770) и английским исследователем Дж. Пристли (1774). В 1775 французский химик А. Лавуазье нашёл, что воздух состоит из двух газов — кислорода и азота и дал первому название.

Более 99,9% кислорода Земли находится в связанном состоянии. Кислород — главный фактор, регулирующий распределение элементов в планетарном масштабе . Содержание его с глубиной закономерно уменьшается. Количество кислорода в магматических породах меняется от 49% в кислых эффузивах и до 38-42% в дунитах и кимберлитах . Содержание кислорода в метаморфических породах соответствует глубинности их формирования: от 44% в эклогитах до 48% в кристаллических сланцах . Максимум кислорода в осадочных породах 49-51%. При погружении осадков происходит их дегидратация и частичное восстановление оксидного железа , сопровождающиеся уменьшением количества кислорода в породе. При подъёме горных пород из глубин в приповерхностные условия начинаются процессы их изменения с привносом воды и углекислоты и содержание кислорода повышается. Исключительную роль в геохимических процессах играет свободный кислород, значение которого определяется его высокой химической активностью, большой миграционной способностью и постоянным, относительно высоким содержанием в биосфере , где он не только расходуется, но и воспроизводится.

Свободный кислород

Полагают, что свободный кислород появился в протерозое в результате фотосинтеза. В гипергенных процессах кислород — один из основных агентов, он окисляет сероводород и низшие оксиды. Кислород определяет поведение многих элементов: повышает миграционную способность халькофилов, окисляя сульфиды до подвижных сульфатов, снижает подвижность железа и , осаждая их в виде гидроксидов и обусловливая этим их разделение, и т. д. В водах океана содержание кислорода меняется: летом океан отдаёт кислород в атмосферу, зимой поглощает его. Полярные регионы обогащены кислородом. Важное геохимическое значение имеют соединения кислорода — и углекислота.

Первичный изотопный состав кислорода Земли отвечал изотопному составу метеоритов и ультраосновных пород (18О = 5,9-6,4%). Процессы осадконакопления привели к фракционированию изотопов между осадками и водой и обеднению тяжёлым кислородом вод океана. Кислород атмосферы обеднён 18 О по сравнению с кислородом океана, принятым за стандарт. Щелочные породы, граниты, метаморфические и осадочные породы обогащаются тяжёлым кислородом. Вариации изотопного состава в земных объектах определяются в основном температурой протекания процесса. На этом основана изотопная термометрия карбонатообразования и других геохимических процессов.

Получение кислорода

Основной промышленный метод получения кислорода — разделение воздуха методом глубокого охлаждения. Как побочный продукт кислород получают при электролизе воды. Разработан способ получения кислорода методом избирательной диффузии газов через молекулярные сита.

Газообразный кислород

Газообразный кислород применяется в металлургии для интенсификации доменных и сталеплавильных процессов, при выплавке цветных металлов в печах , бессемеровании штейнов и др. (свыше 60% потребляемого кислорода); как окислитель во многих химических производствах; в технике — при сварке и резке металлов; при подземной газификации угля и др.; озон — при стерилизации пищевой воды и дезинфекции помещений. Жидкий кислород используют как окислитель для ракетных топлив.

Миллионы лет непрерывно происходит потребление кислорода.

Он в огромных количествах расходуется на медленное и быстрое окисление, на горение и взрыв, а состав воздуха остается неизменным, содержание кислорода в нем не уменьшается.

Как же воздух пополняется кислородом?

Еще в конце XVIII века был поставлен опыт, который поможет нам ответить на этот вопрос.

Под стеклянный колпак была помещена зажженная свеча. Некоторое время свеча горела, но вскоре погасла:

кислород воздуха под колпаком был весь израсходован. Время горения свечи было зафиксировано.

Предполагая, что растения играют какую-то роль в образовании кислорода, опыт был повторен. Рядом с зажженной свечой положили пучок мяты. Горящую свечу и мяту накрыли тем же колпаком. Лучи солнечного света, проникая через стекло колпака, падали на растение, освещая его зеленые листья. Прошло много времени - больше, чем в первом опыте, - но свеча не гасла и продолжала гореть обычным пламенем. Так было установлено, что зеленые листья растений изменяют состав воздуха и на свету выделяют кислород. Одновременно было открыто, что растения извлекают из воздуха углекислый газ.

Никто в то время не мог еще объяснить суть этого замечательного явления. Честь открытия роли растений в жизни нашей планеты принадлежит великому русскому ученому Клименту Аркадьевичу Тимирязеву.

Если посмотреть через микроскоп на срез зеленого листа, то в клетках, похожих на пчелиные соты, можно увидеть зеленые зерна - хлоропласты. Их также называют хлорофилловыми зернами. В каждой клеточке листа содержится от 25 до 50 хлорофилловых зерен. Это о ник говорил Тимирязев: «Хлорофилловое зерно - тот фокус, та точка в мировом пространстве, где солнечный луч, превращаясь в химическую энергию, становится источником всей жизни на земле».

Что же происходит в зеленых листьях растений? В листьях имеются многочисленные отверстия - устьица, которые служат растению для дыхания и питания. Через эти устьица из воздуха в листья проникает углекислый газ. Своими корнями растение всасывает влагу из земли и подает ее к листьям по тонким капиллярам ствола и стеблей.

Под влиянием света и тепла солнечных лучей в хлорофилловых зернах листа между водой и углекислотой происходит сложная химическая реакция - фотосинтез. В результате образуются продукты, переходящие в виноградный сахар и кислород.

Виноградный сахар имеет особое название - глюкоза , которое произошло от греческого слова «глюкос», означающего «сладкий».

Молекулы глюкозы состоят из 6 атомов углерода, 12 атомов водорода и 6 атомов кислорода. На образование 1 молекулы глюкозы необходимо 6 молекул углекислого газа (СO 2) и 6 молекул воды (Н 2 O). При этом должно выделиться 6 молекул кислорода. Следовательно, когда образуется 1 грамм глюкозы, освобождается более 1 грамма, или около 900 кубических сантиметров, чистого кислорода.

Так под влиянием солнечного света и тепла в хлорофилловых зернах растений, живущих на земле и под водой, происходит образование кислорода, которым непрерывно пополняется наша планета.

Растения являются неиссякаемым источником необходимого для жизни кислорода, и их по праву можно назвать «зеленой фабрикой кислорода».

До последнего времени считали, что кислород, который выделяется из растений при фотосинтезе, отщепляется от углекислого газа. Полагали, что в хлорофилловых зернах под действием света происходит расщепление молекулы углекислого газа на кислород и углерод. Углерод, вступая в реакцию с водой, образует, в конечном счете, глюкозу, а кислород выделяется в атмосферу.

В настоящее время существует другая теория. Считают, что в хлорофилловых зернах под действием солнечных лучей происходит распад не молекулы углекислого газа, а молекулы воды. При этом образуется кислород, который выделяется в атмосферу, и водород, который в соединении с углекислым газом дает глюкозу.

Теория эта получила свое экспериментальное подтверждение в 1941 году в опытах А. П. Виноградова, который впервые применил для изучения фотосинтеза тяжелый изотоп кислорода О 18 .

Поливая растение водой, содержащей тяжелый изотоп О 18 , А. П. Виноградов наблюдал, что чем больше тяжелого изотопа кислорода О 18 содержалось в воде, которой поливали растение, тем больше его находили в выделяющемся кислороде.

Если поливать растение обычной водой и поместить его в атмосферу углекислого газа, содержащего тяжелый изотоп кислорода О 18 , то в выделяющемся при фотосинтезе кислороде изотоп О 18 не обнаруживается.

Эти опыты убедительно показали, что при фотосинтезе в зеленых листьях растений кислород получается не за счет углекислого газа, а за счет разложения воды. Водород, входящий в состав воды, вместе с углекислотой идет на образование глюкозы.

Глюкоза в листьях не остается. Она, как растворимое питательное вещество, разносится по всему растению и служит ему пищей и строительным материалом для образования клетчатки. Из клетчатки состоят корни, стволы, стебли и листья растений.

Часть глюкозы превращается в крахмал и откладывается в плодах и зернах.

Для жизни и развития растения необходимы солнечный свет и непрерывное поступление к нему углекислого газа и воды. В процессе питания растения воздух вокруг него обогащается кислородом и обедняется углекислым газом. Благодаря работе ветра воздух перемешивается, и таким образом у листьев растения поддерживается постоянная концентрация углекислого газа.

А как же обеспечивается подача углекислого газа к листьям в жаркую безветренную погоду? В такую погоду молекулы углекислого газа, беспорядочно двигаясь в воздушном пространстве, очутившись около зеленого листа, вдруг резко поворачивают к нему.

Какая сила заставляет их свернуть к листу?

Если наполнить двумя различными газами сосуд, разделенный перегородкой, и затем осторожно вынуть ее, газы перемешаются, образуя однородную смесь. Такое же явление можно наблюдать, если привести в соприкосновение два различных раствора.

Если разделить между собой два различных газа или раствора, поместив между ними перегородку из желатины, кожи или другого мелкопористого материала, можно заметить, как через некоторое время по обеим сторонам перегородки концентрации газов или растворов будут одинаковы.

Процессы самопроизвольного перемешивания газов или жидкостей, а также проникновение их через полупроницаемые перегородки называются диффузией.

Скорость диффузии тем больше, чем больше разница в концентрациях диффундирующих веществ.

Вот почему, как только концентрация углекислого газа у зеленого листа становится меньше, чем на некотором расстоянии от него, воздух около листа пополняется молекулами углекислого газа из близлежащих слоев атмосферы. Их места занимают сотни, тысячи и миллионы молекул углекислого газа из более отдаленных частей пространства.

Одновременно с процессом диффузии углекислого газа идет процесс диффузии кислорода от зеленого листа в более отдаленные пространства, где концентрация его меньше.

Под водой, как и на суше, растения питаются углекислым газом и вырабатывают глюкозу и крахмал, освобождая кислород.

Откуда же берется углекислый газ в воде. Он образуется при дыхании животных и растений, живущих под водой. Кроме того, он попадает туда из воздуха, растворяясь в поверхностных слоях воды. Перемешиванием, или диффузией, углекислый газ проникает вглубь.

Углекислый газ хорошо растворяется в воде. Его растворимость при низких температурах в 35 раз больше растворимости кислорода. В литре воды при температуре 0° и давлении 760 миллиметров растворяется 50 кубических сантиметров кислорода, а углекислого газа - более 1700 кубических сантиметров. Хотя при температуре воды 20° углекислого газа в литре растворится примерно половина от этого количества, но и этого достаточно, чтобы растения, находящиеся под водой, не испытывали недостатка в углекислом газе. На зеленой поверхности подводных растений происходит тот же процесс усвоения углерода, что и на воздухе.

Налейте в стакан обыкновенной водопроводной воды и пропустите через нее углекислый газ. Опустите в воду растение и накройте его воронкой. На узкую часть воронки наденьте пробирку, наполненную водой. Вынесите стакан с растением на солнечный свет. Через несколько часов в пробирке соберется заметное количество газа. Снимите пробирку с узкой части воронки и под водой

Растение, находясь под водой, при питании выделяет кислород.

заткните ее пробкой. Теперь можно вынуть пробирку из воды и опрокинуть ее пробкой вверх. Оставшаяся в пробирке вода опустится на дно, а газ окажется над водой. Откройте пробку. Так как плотность кислорода несколько больше плотности воздуха, кислород некоторое время (пока не продиффундирует в воздух) останется в пробирке. Опустите в пробирку тлеющую лучинку, и вы убедитесь в том, что газ, который выделился из растения, - кислород.

Образующийся в воде кислород равномерно распределяется по всей толще воды, насыщая ее. Если кислорода окажется больше, чем его может раствориться в воде при данной температуре, избыток его уйдет в воздух. Если его будет меньше, то недостающее количество кислорода дополнится из воздуха.

Не совсем верно утверждать, что кислород равномерно распределяется по всей толще воды. На разной глубине вода имеет различную температуру. А мы знаем, что чем выше температура, тем меньше растворится в ней кислорода. Поэтому в разное время года, на различных глубинах концентрация растворенного в воде кислорода различна. В неглубоких водоемах разница в количестве растворенного кислорода в верхних и нижних слоях не очень велика, и ею можно пренебречь.

Растения, живущие на земле или под водой, не только выделяют кислород, но и поглощают его. Как и любой живой организм, растения дышат. Часть кислорода, которая образуется при питании растений, потребляется ими при дыхании.

Если после долгой зимней ночи войти в закрытое помещение, где находилось много цветов, чувствуется такая духота, как будто здесь долгое время находилось много людей. Растения израсходовали часть кислорода воздуха на дыхание, и в помещении образовался избыток углекислого газа.

Итак, кислород в природе совершает непрерывный круг. При дыхании человека, животных и растений, при горении твердого и жидкого топлива кислород расходуется и образуется углекислый газ. Этот газ идет на питание растений, которые возвращают кислород обратно в воздух.

Растения играют важную роль в жизни человека. Они не только кормят и согревают нас - они веками обеспечивают постоянное содержание кислорода в воздухе, без чего невозможна жизнь на Земле.

А не меняется ли содержание кислорода в воздухе зимой, когда остаются зелеными только хвойные деревья?

Зимой количество кислорода, выделяемого растениями, сокращается, но запасы его в атмосфере чрезвычайно велики. Если бы в течение тысячи или даже двух тысяч лет вообще не было никакого возвращения кислорода, а происходило только его потребление, то общее количество израсходованного кислорода не превысило бы 0,1 процента всего запаса кислорода в атмосфере. Запасы кислорода в воздухе неисчислимы.

Кислород О имеет атомный номер 8, расположен в главной подгруппе (подгруппе а) VI группе, во втором периоде. В атомах кислорода валентные электроны размещаются на 2-м энергетическом уровне, имеющем только s — и p -орбитали. Это исключает возможность перехода атомов О в возбуждённое состояние, поэтому кислород во всех соединениях проявляет постоянную валентность, равную II. Имея высокую электроотрицательность, атомы кислорода всегда в соединениях заряжены отрицательно (с.о. = -2 или -1). Исключение – фториды OF 2 и O 2 F 2 .

Для кислорода известны степени окисления -2, -1, +1, +2

Общая характеристика элемента

Кислород – самый распространенный элемент на Земле, на его долю приходится чуть меньше половины, 49 % от общей массы земной коры. Природный кислород состоит из 3 стабильных изотопов 16 О, 17 О и 18 О (преобладает 16 О). Кислород входит в состав атмосферы (20,9 % по объему, 23,2 по массе), в состав воды и более 1400 минералов: кремнезема, силикатов и алюмосиликатов, мраморов, базальтов, гематита и других минералов и горных пород. Кислород составляет 50-85% массы тканей растений и животных, т.к содержится в белках, жирах и углеводах, из которых состоят живые организмы. Общеизвестна роль кислорода для дыхания, для процессов окисления.

Кислород сравнительно мало растворим в воде – 5 объемов в 100 объемах воды. Однако, если бы весь растворенный в воде кислород перешел в атмосферу, то он занял бы огромный объем – 10 млн км 3 (н.у). Это равно примерно 1% всего кислорода в атмосфере. Образование на земле кислородной атмосферы обусловлено процессами фотосинтеза.

Открыт шведом К. Шееле (1771 – 1772 г.г) и англичанином Дж. Пристли (1774г.). Первый использовал нагревание селитры, второй – оксида ртути (+2). Название дал А.Лавуазье («оксигениум» - «рождающий кислоты»).

В свободном виде существует в двух аллотропных модификациях – «обыкновенного» кислорода О 2 и озона О 3 .

Строение молекулы озона

3О 2 = 2О 3 – 285 кДж
Озон в стратосфере образует тонкий слой, который поглощает большую часть биологически вредного ультрафиолетового излучения.
При хранении озон самопроизвольно превращается в кислород. Химически кислород О 2 менее активен, чем озон. Электроотрицательность кислорода 3,5.

Физические свойства кислорода

O 2 – газ без цвета, запаха и вкуса, т.пл. –218,7 °С, т.кип. –182,96 °С, парамагнитен.

Жидкий O 2 голубого, твердый – синего цвета. O 2 растворим в воде (лучше, чем азот и водород).

Получение кислорода

1. Промышленный способ — перегонка жидкого воздуха и электролиз воды:

2Н 2 О → 2Н 2 + О 2

2. В лаборатории кислород получают:
1.Электролизом щелочных водных растворов или водных растворов кислородосодержащих солей (Na 2 SO 4 и др.)

2. Термическим разложением перманганата калия KMnO 4:
2KMnO 4 = K 2 MnO4 + MnO 2 + O 2 ,

Бертолетовой соли KClO 3:
2KClO 3 = 2KCl + 3O 2 (катализатор MnO 2)

Оксида марганца (+4) MnO 2:
4MnO 2 = 2Mn 2 O 3 + O 2 (700 o C),

3MnO 2 = 2Mn 3 O 4 + O 2 (1000 o C),

Пероксид бария BaO 2:
2BaO 2 = 2BaO + O 2

3. Разложением пероксида водорода:
2H 2 O 2 = H 2 O + O 2 (катализатор MnO 2)

4. Разложение нитратов:
2KNO 3 → 2KNO 2 + O 2

На космических кораблях и подводных лодках кислород получают из смеси K 2 O 2 и K 2 O 4:
2K 2 O 4 + 2H 2 O = 4KOH +3O 2
4KOH + 2CO 2 = 2K 2 CO 3 + 2H 2 O

Суммарно:
2K 2 O 4 + 2CO 2 = 2K 2 CO 3 + 3О 2

Когда используют K 2 O 2 , то суммарная реакция выглядит так:
2K 2 O 2 + 2CO 2 = 2K 2 CO 3 + O 2

Если смешать K 2 O 2 и K 2 O 4 в равномолярных (т.е. эквимолярных) количествах, то на 1 моль поглощенного СО 2 выделится один моль О 2.

Химические свойства кислорода

Кислород поддерживает горение. Горение — б ыстрый процесс окисления вещества, сопровождающийся выделением большого количества теплоты и света. Чтобы доказать, что в склянке находится кислород, а не какой-то другой газ, надо в склянку опустить тлеющую лучинку. В кислороде тлеющая лучинка ярко вспыхивает. Горение различных веществ на воздухе – это окислительно-восстановительный процесс, в котором окислителем является кислород. Окислители – это вещества, «отбирающие» электроны у веществ-восстановителей. Хорошие окислительные свойства кислорода можно легко объяснить строением его внешней электронной оболочки.

Валентная оболочка кислорода расположена на 2-м уровне – относительно близко к ядру. Поэтому ядро сильно притягивает к себе электроны. На валентной оболочке кислорода 2s 2 2p 4 находится 6 электронов. Следовательно, до октета недостает двух электронов, которые кислород стремится принять с электронных оболочек других элементов, вступая с ними в реакции в качестве окислителя.

Кислород имеет вторую (после фтора) электроотрицательность в шкале Полинга. Поэтому в подавляющем большинстве своих соединений с другими элементами кислород имеет отрицательную степень окисления. Более сильным окислителем, чем кислород, является только его сосед по периоду – фтор. Поэтому соединения кислорода с фтором – единственные, где кислород имеет положительную степень окисления.

Итак, кислород – второй по силе окислитель среди всех элементов Периодической системы. С этим связано большинство его важнейших химических свойств.
С кислородом реагируют все элементы, кроме Au, Pt, He, Ne и Ar, во всех реакциях (кроме взаимодействия со фтором) кислород — окислитель.

Кислород легко реагирует с щелочными и щелочноземельными металлами:

4Li + O 2 → 2Li 2 O,

2K + O 2 → K 2 O 2 ,

2Ca + O 2 → 2CaO,

2Na + O 2 → Na 2 O 2 ,

2K + 2O 2 → K 2 O 4

Мелкий порошок железа (так называемого пирофорного железа) самовоспламеняется на воздухе, образуя Fe 2 O 3 , а стальная проволока горит в кислороде, если ее заранее раскалить:

3 Fe + 2O 2 → Fe 3 O 4

2Mg + O 2 → 2MgO

2Cu + O 2 → 2CuO

С неметаллами (серой, графитом, водородом, фосфором и др.) кислород реагирует при нагревании:

S + O 2 → SO 2 ,

C + O 2 → CO 2 ,

2H 2 + O 2 → H 2 O,

4P + 5O 2 → 2P 2 O 5 ,

Si + O 2 → SiO 2 , и т.д

Почти все реакции с участием кислорода O 2 экзотермичны, за редким исключением, например:

N 2 + O 2 2NO – Q

Эта реакция протекает при температуре выше 1200 o C или в электрическом разряде.

Кислород способен окислить сложные вещества, например:

2H 2 S + 3O 2 → 2SO 2 + 2H 2 O (избыток кислорода),

2H 2 S + O 2 → 2S + 2H 2 O (недостаток кислорода),

4NH 3 + 3O 2 → 2N 2 + 6H 2 O (без катализатора),

4NH 3 + 5O 2 → 4NO + 6H 2 O (в присутствии катализатора Pt),

CH 4 (метан) + 2O 2 → CO 2 + 2H 2 O,

4FeS 2 (пирит) + 11O 2 → 2Fe 2 O 3 + 8SO 2 .

Известны соединения, содержащие катион диоксигенила O 2 + , например, O 2 + — (успешный синтез этого соединения побудил Н. Бартлетта попытаться получить соединения инертных газов).

Озон

Озон химически более активен, чем кислород O 2 . Так, озон окисляет иодид - ионы I — в растворе Kl:

O 3 + 2Kl + H 2 O = I 2 + O 2 + 2KOH

Озон сильно ядовит, его ядовитые свойства сильнее, чем, например, у сероводорода. Однако в природе озон, содержащийся в высоких слоях атмосферы, выполняет роль защитника всего живого на Земле от губительного ультрафиолетового излучения солнца. Тонкий озоновый слой поглощает это излучение, и оно не достигает поверхности Земли. Наблюдаются значительные колебания в толщине и протяженности этого слоя с течением времени (так называемые озоновые дыры) причины таких колебаний пока не выяснены.

Применение кислорода O 2: для интенсификации процессов получения чугуна и стали, при выплавке цветных металлов, как окислитель в различных химических производствах, для жизнеобеспечения на подводных кораблях, как окислитель ракетного топлива (жидкий кислород), в медицине, при сварке и резке металлов.

Применение озона О 3: для обеззараживания питьевой воды, сточных вод, воздуха, для отбеливания тканей.

ОПРЕДЕЛЕНИЕ

Кислород – химический элемент с порядковым номером 8. Располагается во втором периоде в главной подгруппе VI-ой группы (в коротком варианте периодической таблицы) или в 16-й группе по современным стандартам нумерации.

Атомная масса: 15,9994 а.е.м.

Электронная формула: 1s 2 2s 2 2p 4

Кислород – самый распространённый элемент в земной коре (47 % массы). Морские и пресные воды содержат 85,82 %(по массе) связанного кислорода. Содержание свободного кислорода в атмосфере составляет 20,95% по объёму и 23,10 % по массе. Кислород входит в состав молекул многих органических веществ. Число атомов кислорода в живых клетках составляет около 25 %, массовая доля кислорода в живых организмах – около 65 %.

Кислород существует в виде двухаллотропных модификаций – кислорода и озона.

Кислород (дикислород) – простое вещество, состоящее из двух атомов кислорода.

Формула: O 2 .


Молярная масса: 31,998 г/моль.

Кислород при нормальных условиях – газ без цвета, вкуса и запаха. В жидком состоянии кислород светло-голубого цвета, а в твердом – светло-синие кристаллы.

Озон – простое вещество, состоящее из трех атомов кислорода.

Формула: O 3 .

Структурная формула:


Молярная масса: 47,998 г/моль

При нормальных условиях озон – сине-голубой газ с характерным резким запахом. В жидком состоянии – темно-фиолетового цвета (цвета индиго). В твердом виде – черные кристаллы с фиолетовым отблеском.

Озон присутствует в атмосфере, в так называемом озоновом слое, где он образуется из кислорода под действием ультрафиолетового излучения или грозовых разрядов:

Примеры решения задач

ПРИМЕР 1

Задание Одно и то же количество металла соединяется с 0,2 г кислорода и с 3,173 г одного из галогенов. Определите эквивалент галогена.
Решение Эквивалентом вещества называется такое его количество, которое соединяется с 1 молем атомов водорода или замещает то же количество атомов водорода в химических реакциях.

По закону эквивалентов:

Эквивалентная масса кислорода Э О2 г/моль.

Выразим эквивалентную массу галогена:

Галоген – йод.

Ответ Галоген – йод.

ПРИМЕР 2

Задание Через растворы и пропустили одно и то же количество электричества. На одном из катодов выделилось 25,9 г свинца. Сколько граммов никеля выделилось на другом катоде? Сколько литров кислорода, измеренного при нормальных условиях, выделилось на каждом из анодов?
Решение Запишем уравнения процессов, происходящих при электролизе каждого раствора.

Электролиз раствора NiSO 4

Ni 2+ + 2ē Ni 0 восстановление ионов никеля

2Н 2 О – 4ē = О 2 + 4Н + окисление с выделением кислорода

Электролиз раствора РbSO 4

Pb 2+ + 2ē Pb 0 восстановление ионов никеля

2Н 2 О – 4ē = О 2 + 4Н + окисление воды с выделением кислорода

По закону Фарадея:

где I – сила тока при электролизе, А; t – продолжительность электролиза, с; F – число Фарадея, F = 96500 Кл/моль, Э Ме – эквивалентная масса металла.

Поскольку через растворы NiSO 4 и РbSO 4 было пропущено одинаковое количество электричества, то

Что такое кислород? Это 8-ой химический элемент периодической таблицы Д.И. Менделеева, имеющий относительную атомную массу 16. Он представляет собой бесцветный газ, который не имеет запаха и вкуса. Кислород играет важнейшую роль в жизни людей. Нельзя назвать элемент, который был бы наиболее важен для Земли. Мы не просто так начинаем изучать химию именно с кислорода. Со всеми элементами периодической таблицы кислород образует какие-либо соединения. Исключением являются легкие инертные газы.

Кислород, наряду с химическим элементом «углерод «, играет важнейшую роль в деятельности человечества и жизни на Земле. В атмосфере Земли он находится в свободном состоянии. В океанах и морях содержится большой объем кислорода. Кислород – «порождающий кислоту». В нормальных условиях он представляет собой газ, состоящий из двухатомных молекул. Но кислород также имеет свойство затвердевать и конденсироваться в светло-голубую жидкость. Он может образовывать взрывчатые смеси при взаимодействии с горючими газами. В промышленности кислород получают путем деления воздуха. Кислород используют в некоторых видах ракетного топлива, на металлургических предприятиях, химических заводах, в шахтах.

Большое влияние на увеличение объемов кислорода на поверхности нашей планеты оказали прокариоты, представляющие собой зелено-синие водоросли. Эти простейшие организмы появились около 2 миллиардов лет назад. Они потребляли углерод и кислород из углекислого газа, с помощью фотосинтеза, и в то же время выбрасывали в воздух свободный кислород. Прокариотам не нужен был свободный кислород, потому что они обладали анаэробным типом дыхания. Получается, что вещество, без которого сейчас мы не могли бы существовать, когда-то было загрязняющим. Из-за этого загрязнения произошли значительные изменения в строении Земли. Кислород — это основная причина ржавления металлов, а также он является сильным окислителем при процессе нагревания. Этот химический элемент малорастворим в воде. При температуре 20 градусов Цельсия имеет малую химическую активность. Поддерживает горение некоторых веществ на открытом воздухе. Простейший опыт для проверки этого явления – воспламенение уже тлеющей деревянной лучинки в кислородной атмосфере.

Исторические факты о химическом элементе Кислород

С самых древних времен ученые интересовались процессами дыхания и горения. Китайские документы 8 века указывают на то, что не сам воздух поддерживает процесс горения, а только некоторая его часть. Леонардо Да Винчи, живший в 15 веке, тоже исследовал это явление. Финальное открытие двух составляющих воздуха произошло в 1773 году. Выдающийся шведский ученый К.В. Шееле и Джозеф Пристли практически одновременно получили кислород, независимо друг от друга. На основе масштабных научных исследований они смогли объяснить горение и дыхание как процессы взаимодействия некоторых веществ с Кислородом. А в 1775 году А. Лавуазье назвал кислород «образующим кислоты». Такое название было выбрано потому, что кислород входит в состав некоторых кислот. Немалый вклад в открытие кислорода внес французский ученый Пьер Байен. Он опубликовал свои работы по экспериментам с ртутью и ее оксидом. Также здесь стоит упомянуть теорию Флогистона, тормозившую развитие науки в течение длительного времени.

В 1898 году было выдвинуто утверждение о том, что человечеству в скором будущем грозит смерть от удушья. Это утверждение обуславливалось тем, что в воздух ежедневно выделяется огромный объем углекислого газа, преимущественно от промышленных фабрик и заводов. К счастью, это утверждение было опровергнуто. К.А. Тимирязев доказал, что зеленые растения, выделяющие кислород, не позволят человечеству исчезнуть с этой планеты.