Схемы сетей. Способы обеспечения циркуляции воды в системе. Конструктивные особенности сети. Определение расходов горячей воды. Горячее водоснабжение от ЦТП. Основы расчета систем горячего водоснабжения.

ОСОБЕННОСТИ СЕТЕЙ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

§ 45. СХЕМЫ СЕТЕЙ

Системы централизованного горячего водоснабжения являются частью внутреннего водопровода. Сети горячего водоснабжения имеют много общего с сетями холодного водоснабжения.

Сеть горячего водоснабжения также, как сеть холодного водопровода, бывает с нижней и с верхней разводками. Сеть горячего водоснабжения бывает тупиковой и закольцованной, но, в отличие от сетей холодного водопровода, кольцевание сети необходимо для выполнения важной функциональной задачи - сохранения высокой температуры воды.

Простые (тупиковые) сети горячего водоснабжения с подающими трубопроводами применяют в небольших малоэтажных зданиях с короткими стояками, а также в бытовых помещениях промышленных зданий и в зда ниях с длительным и более или менее стабильным потреблением горячей воды "(бани, прачечные).

Схемы сетей горячего водоснабжения с циркуляционным трубопроводом следует применять в жилых зданиях, гостиницах, общежитиях, лечебных учреждениях, санаториях и домах отдыха, в детских дошкольных учреждениях, а также во всех случаях, когда возможен неравномерный и кратковременный отбор воды.

Обычно сеть горячего водоснабжения состоит из горизонтальных подающих магистралей и вертикальных распределительных трубопроводов-стояков, от которых устраивают поквартирные разводки. Стояки горячего водоснабжения прокладывают как можно ближе к приборам.

Кроме того, сети горячего водоснабжения подразделяются на двухтрубные (с закольцованными стояками) и однотрубные (с тупиковыми стояками).

При увеличении радиуса действия систем горячего водоснабжения и разнообразии условий жилой застройки требовалось совершенствование схем централизованных систем горячего водоснабжения. Были созданы принципиально новые схемы с самостоятельными независимыми циркуляционными контурами, ограниченными пределами одной секции здания или пределами одной группы стояков. Небольшой радиус действия этих контуров позволяет поддерживать в них циркуляцию за счет гравитационного напора, в то время как обмен воды в магистральных трубах происходит или за счет водоразбора, или с помощью циркуляционного насоса.



Рассмотрим некоторые из большого числа возможных схем сетей горячего водоснабжения.

При верхней разводке магистралей (рисунок 1) сборный циркуляционный трубопровод замыкается в виде кольца. Циркуляция воды в трубопроводном кольце при отсутствии водоразбора осуществляется под действием гравитационного напора, возникающего в системе из-за разницы плотности охлажденной и горячей воды. Охлажденная в стояках вода опускается вниз в водонагреватель и вытесняет из него воду с более высокой температурой. Таким образом происходит непрерывный водообмен в системе.

Рисунок 1. Схема с верхней разводкой подающей магистрали

1 - водонагреватель; 2 - подающий стояк; 3 - распределительные стояки; 4 - циркуляционная сеть

Тупиковая схема сети (рисунок 2) имеет наименьшую металлоемкость, но из-за значительного остывания и нерационального сброса остывшей воды применяется в жилых зданиях высотой до четырех этажей, если на стояках не предусмотрены полотенцесушители и протяженность магистральных труб мала. Если же протяженность магистральных труб велика, а высота стояков ограничена, то применяют схему с закольцованными подающей и циркуляционной магистралями с установкой на них циркуляционного насоса (Рисунок 3). В этой схеме тоже следует ожидать остывания, но меньшего объема воды. Подобная схема позволяет увеличить протяженность сети.

Рисунок 2 - Тупиковая схема

горячего водоснабжения

1 - водонагреватель;

2 - распределительные стояки

Рисунок 3. Схема с закольцованными магистральными трубопроводами

1 - водонагреватель;

2 - распределительные стояки;

3 - диафрагма (дополнительное гидравлическое сопротивление);

4 - циркуляционный насос;

5 - обратный клапан

Наибольшее распространение получила двухтрубная схема (Рисунок 4), в которой циркуляция по стоякам и магистралям осуществляется с помощью насоса, забирающего воду из обратной магистрали и подающего ее в водонагреватель. Система с односторонним присоединением водоразборных точек к подающему стояку и с установкой полотенцесушителей на обратном стояке представляет собой наиболее распространенный вариант подобной схемы. Двухтрубная схема оказалась надежной в эксплуатации и удобной для потребителей, но для нее характерна высокая металлоемкость.

Рисунок 4. Двухтрубная схема горячего водоснабжения

1 - водонагреватель; 2 - подающая магистраль; 3 - циркуляционная магистраль; 4 - циркуляционный насос; 5 - подающий стояк;

6 - циркуляционный стояк; 7 - водоразбор; 8 – полотенцесушители

Для снижения металлоемкости в последние годы стали использовать схему (Рисунок 5), в которой несколько подающих стояков объединяются перемычкой с одним циркуляционным стояком. Такое решение схемы горячего водоснабжения чаще всего используется для общественных зданий, где не предусматривается установка полотенцесушителей. Схема отличается низкими эксплуатационными показателями, так как верхняя перемычка выполняется из труб того же диаметра, что и подающие стояки; сопротивление ее превышает сопротивление магистралей, поэтому вода движется только в стояках, близких к циркуляционному.

Рисунок 5. Схема с одним объединяющим циркуляционным стояком

1 - водонагреватель; 2 - подающая магистраль; 3 - циркуляционная магистраль; 4 - циркуляционный насос; 5 - водоразборные стояки; 6 - циркуляционный стояк; 7 - обратный клапан

Недавно появились схемы однотрубной системы горячего водоснабжения, предложенные МНИИТЭП, с одним холостым подающим стояком на группу водоразборных стояков (Рисунок 6). Холостой стояк изолирован и устанавливается в паре с одним водоразборным или в секционном узле, состоящем из 2-8 закольцованных водоразборных стояков. Основное назначение холостого стояка - транспортирование горячей воды из магистрали в верхнюю перемычку и далее в водоразборные стояки. В каждом стояке происходит самостоятельная, дополнительная циркуляция за счет гравитационного напора, возникающего в контуре секционного узла из-за остывания воды в водоразборных стояках с полотенцесушителями. Холостой стояк помогает правильному распределению потоков в пределах секционного узла. Как показывает опыт эксплуатации, в зданиях высотой 9 и более этажей гравитационный напор, возникающий в стояках при остывании воды, как правило, достаточен для обеспечения необходимой циркуляции.

Рисунок 6. Секционная однотрубная схема горячего водоснабжения

1 - подающая магистраль;

2 - циркуляционная магистраль;

3 - холостой подающий стояк;

4 - водоразборный стояк;

5 - кольцующая перемычка;

6 - запорная арматура;

7 - полотенцесушитель

СПОСОБЫ ОБЕСПЕЧЕНИЯ ЦИРКУЛЯЦИИ ВОДЫ В СИСТЕМЕ. ПРЕДЕЛЫ ИСПОЛЬЗОВАНИЯ ЕСТЕСТВЕННОЙ ЦИРКУЛЯЦИИ

Циркуляционные трубопроводы служат для предотвращения остывания горячей воды у точек водоразбора при незначительном водопотреблении или при полном его отсутствии.

Водообмен и следом за ним возобновление теплоты в системе можно достичь тремя путями:

естественная циркуляция;

искусственный путь, с использованием циркуляционных насосов;

использование комбинированной насосно-естественной системы циркуляции, при которой протяженный горизонтально расположенный трубопровод имеет свой циркуляционный контур, в котором циркулирует вода под напором центробежного насоса, а присоединяемые к магистрали самостоятельные контуры обладают обособленной (часто естественной) циркуляцией воды.

Естественная циркуляция обусловлена неоднородным распределением плотности воды в стояке, который представляет собой один из составных элементов циркуляционного контура.

Величина естественного (гравитационного) напора определяется разностью плотностей остывшей и нагретой воды:

ΔH cir =gh(ρ 0 -ρ h) , (1)

где h – расстояние по вертикали от центра тяжести водонагревателя до кольцующей перемычки; р 0 и p h – плотность при средней температуре охлажденной воды в обратном стояке и горячей (нагретой) воды в подающем стояке.

Из формулы (1) следует, что чем выше стояк горячей воды (и наверное, чем выше здание) и больше разница в плотности остывшей и горячей воды, тем больше величина гидростатического напора.

Естественная циркуляция возможна в случае, когда

ΔH cir ≥∑H+∑H l ,

где ∑H - сумма потерь напора по длине трубопроводов; ∑H l - то же, на местные сопротивления.

Циркуляционный напор по своей величине невелик, поэтому диаметры циркуляционных труб подбирают на малые скорости движения воды.

Практический опыт показывает, что системы с естественной циркуляцией могут применяться для сети протяженностью не более 50 м при верхней разводке и не более 35 м при нижней разводке, но в случае расположения водонагревателя ниже самого нижнего водоразборного крана.

В таблице 1 приведены условия возможной работы системы горячего водоснабжения при естественной циркуляции.

Таблица 1

В комбинированных системах естественная циркуляция должна рассчитываться по отношению к точкам присоединения их к магистралям, находящимся под воздействием циркуляционного насоса.

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ СЕТИ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

Трубопроводная сеть горячего водоснабжения выполняется так же, как и трубопроводы холодного водопровода, из стальных оцинкованных нефтеводогазопроводных труб.

К задачам сети горячего водоснабжения следует отнести:

предотвращение поступления горячей воды в водопроводную сеть холодного водоснабжения и наоборот (предотвращение так называемых «перетоков»);

уменьшение теплопотерь в трубопроводах;

необходимость компенсации температурных удлинений в стальных трубопроводах;

необходимость в установке специфических санитарно-технических приборов.

Для предотвращения поступления горячей воды в сеть холодного водоснабжения и наоборот обязательна установка обратных клапанов на подводках холодной воды к водонагревателям и групповым смесителям, на циркуляционном трубопроводе перед присоединением его к водонагревателям, в обвязке циркуляционного насоса.

Специфическим санитарно-техническим прибором горячего водоснабжения кроме смесительной арматуры является полотенцесушитель, который изготовляют из стальных оцинкованных труб диаметром 32 мм. Кроме того, отечественная промышленность выпускает латунные, никелированные или хромированные полотенцесушители типа ПО-30 (Рисунок 7, а) и ПО-20 (Рисунок 7,б) для отопления ванных и душевых комнат; их устанавливают согласно принятой схеме горячего водоснабжения на подающих стояках либо на циркуляционных стояках.

Рисунок 7. Полотенцесушители типа ПО-30 (а) и ПО-20 (б)

Трубопроводы горячего водоснабжения при повышении температуры удлиняются, и это удлинение необходимо компенсировать, если при наличии поворотов нельзя рассчитывать на естественную компенсацию («самокомпенсацию»). Каждый поворот трубопровода в зависимости от диаметра и толщины стенки может удлиниться на величину от 10 до 20 мм. В противном случае при удлинениях прямых участков до 50 мм необходима установка специальных компенсаторов.

В системах горячего водоснабжения чаще всего применяются гнутые компенсаторы (П-образные или лирообразные).

Компенсаторы устанавливают на прямых трубопроводах, разделенных на участки неподвижными опорами, которые распределяют таким образом общее удлинение трубопровода в соответствии с компенсирующей способностью принятого компенсатора.

Гибкие компенсаторы из труб применяют для компенсации тепловых удлинений трубопроводов независимо От параметров теплоносителя, способа прокладки и диаметров труб. В основном используются П-образные компенсаторы (Рисунок 8).

Рисунок 8. П-образный гнутый компенсатор

Расчетное тепловое удлинение трубопроводов, мм, для определения размеров гибких компенсаторов определяют по формуле:

Δх=ξ Δl (12.2)

где Δl = αΔtL - полное тепловое удлинение расчетного участка трубопровода, мм; L - расстояние между неподвижными опорами трубопровода, м; α =0,000012 - средний коэффициент линейного расширения стали при нагревании от 0 до 1 °С; Δt - расчетный перепад температуры, характерный для системы; ξ - коэффициент, учитывающий релаксацию, т. е. понижение временного сопротивления металла в результате продолжительного действия нагрузки и предварительного растяжения компенсатора.

Трубопроводы жестко защемляются на неподвижных опорах.

Теплоизоляцию трубопроводов и оборудования применяют во избежание потерь теплоты на всех подающих и циркуляционных (за исключением, прокладываемых скрытно в шахтах или каналах) трубах, кроме подводок к водоразборной арматуре.

В верхних точках сети горячего водоснабжения предусматривается установка устройств для выпуска воздуха из системы, если в системе невозможен выпуск воздуха через водоразборную арматуру.

РАСЧЕТ СИСТЕМ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

РАСЧЕТ СИСТЕМ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ В РЕЖИМЕ ВОДОРАЗБОРА

Расчет горячего водоснабжения в режиме водоразбора является продолжением гидравлического расчета холодного водопровода, но только по ответвлению одной и той же гидравлической системы, имеющей общий источник питания (общее обеспечение расхода воды) и общий источник энергии (общий источник напора). Различия в расчете заключаются в следующем.

1). Гидравлический расчет систем горячего водоснабжения производится на расчетный расход горячей воды q h , cir с учетом циркуляционного расхода л/с, определяемого по формуле:

q h , cir =q h ·(1+K cir),

где k cir - коэффициент, принимаемый для водонагревателей и начальных участков системы до первого водоразборного стояка:

q h /q cir . . . 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1

r cir . . . 0,57 0,43 0,43 0,40 0,38 0,36 0,33 0,25 0,12 0,00

для остальных участков - равным 0.

2). Расчетные расходы воды на участке сети горячего водоснабжения определяются по формуле (7.9), но с той разницей, что q 0 принимается по потреблению воды приборами горячей воды, т.е. q o =q 0 h .

3). Потери напора в трубопроводах горячего водоснабжения определяются с учетом зарастания внутреннего сечения из-за коррозии. Для этого используется формула, аналогичная формуле (7.2) определения дополнительных потерь на местные сопротивления

H l = i ·(l + r l) ·r э к, (13.2)

где k l - коэффициент, учитывающий потери на местные сопротивления; r эк - коэффициент увеличения потерь напора из-за зарастания сечения труб в процессе эксплуатации, определяемый на основе практического опыта в зависимости от состава и свойств воды: 0,2 - для подающих и циркуляционных распределительных трубопроводов; 0,5 - для трубопроводов в пределах ЦТП, а также для трубопроводов водоразборных стояков с полотенцесушителями; 0,1 - для трубопроводов водоразборных стояков без полотенцесушителей и для циркуляционных стояков.

4). Дополнительным членом в формуле (7.1) должен быть член, отображающий потери напора в водонагревателе. В емкостных водонагревателях они очень малы и поэтому их принимают с известным запасом - не более 0,5 м. В скоростных водонагревателях потери "напора весьма значительны и вычисляются по формуле в зависимости от длины теплообменных трубок и числа секций водонагревателя.

5). Расчет сети горячего водоснабжения производится с помощью различных таблиц (для холодной и горячей воды раздельно).

6). От точки ответвления холодного водопровода к водонагревателю расчетный расход воды определяется по подаче смешанной воды, т.е. q o =q о tot .

Для нормальной работы смесительной арматуры и стабильного регулирования температуры смешанной воды во время процедуры напоры в подводящих трубопроводах холодного и горячего водоснабжения должны быть примерно равными. Если разница напоров в сетях холодного и горячего водоснабжения будет более 10 м, то необходимо предусмотреть установку дополнительного насоса в сети горячего водоснабжения (перед водонагревателем).

При расчете сети горячего водоснабжения необходимо следить за гидравлической устойчивостью сети, для чего необходимо избегать возможных резких колебаний расходов воды. Для устранения колебаний наибольшие потери напора должны допускаться в конечных участках системы. Эти требования в особой степени относятся к системам с большим числом душевых установок (бытовые помещения промышленных зданий, бани, гостиницы).

РАСЧЕТ СИСТЕМ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ В РЕЖИМЕ ЦИРКУЛЯЦИИ

Циркуляция в системе горячего водоснабжения предусматривается с целью сохранения постоянства температуры у наиболее удаленного водоразборного крана. В противном случае возможен сброс остывшей воды и значительное возрастание нерационального потребления воды. Очевидно, что наиболее неблагоприятным режимом при этом является полное отсутствие водоразбора из системы горячего водоснабжения, за исключением начальных участков до первого водоразборного стояка.

Циркуляционный расход горячего водоснабжения определяется по формуле:

(13.3)

где Q ht - теплопотери в трубопроводах горячего водоснабжения, кВт;

Δt – разность температур в подающих трубопроводах системы от водонагревателя до наиболее удаленной водоразборной точки, °С;

β - коэффициент разрегулировки циркуляции.

Значения Q ht и β в зависимости от схемы горячего водоснабжения следует принимать следующими:

для систем, в которых предусматривается циркуляция воды по водоразборным стоякам, Q ht следует определять по подающим и разводящим трубопроводам при Δt =10°С и β =1;

для систем, в которых предусматривается циркуляция воды по водоразборным стоякам с переменным сопротивлением циркуляционных стояков, Q ht следует определять по подающим, разводящим трубопроводам и водоразборным стоякам при Δt =10°С и β =1;

при одинаковых сопротивлениях секционных узлов или стояков Q ht следует определять по водоразборным стоякам при Δt =8,5°С и β =1,3;

для водоразборного стояка или секционного узла теплопотери определяются по подающим трубопроводам, включая Кольцующую перемычку при Δt =8,5°С и β = 1,0.

Разница между потерями напора и подающих и циркуляционных трубопроводах от водонагревателя до наиболее удаленных водоразборных или циркуляционных стояков каждой ветви системы для разных ветвей Должна быть не более 10 %.

При невозможности гидравлической увязки давлений в сети трубопроводов системы горячего водоснабжения путем соответствующего подбора диаметров труб прибегают к установке диафрагм на циркуляционном трубопроводе системы. Диаметр отверстий регулирующих диафрагм определяется по формуле:

(13.4)

где H ep - избыточный напор, м, который необходимо погасить диафрагмой.

В системах с одинаковым сопротивлением секционных узлов или стояков суммарные потери давления по подающему и циркуляционному трубопроводам в пределах между первым и последним стояками при циркуляционных расходах должны в 1,6 раза превышать потери давления в секционном узле или стояке при разрегулировке циркуляции β =1,3.

Диаметры трубопроводов циркуляционных стояков определяют при условии, чтобы при циркуляционных расходах в стояках или секционных узлах потери давления между точками присоединения их к распределительному подающему и сборному циркуляционному трубопроводам не отличались более чем на 10%.

В системах горячего водоснабжения, присоединяемых к закрытым тепловым сетям, потери давления в секционных узлах при расчетном циркуляционном расходе следует допускать в пределах 0,03-0,06 МПа.

Величина теплопотерь определяется по формуле:

где – коэффициент теплопередачи неизолированной трубы, принимаемый равным 11,63 Вт/(м 2 ·град); d i - наружный диаметр трубопроводов на расчетном участке, м; l i - расчетная длина участка, м; η - коэффициент эффективности теплоизоляции (η ≈ 0,6); - разность температур между средней температурой на расчетном участке и температурой окружающего воздуха помещения; Q hr y д - удельные теплопотери 1 м трубопровода при заданном Δt m , Вт/м (табл. 13.1).

Таблица 13.1

Условный диаметр трубы, мм Теплопотери изолированных трубопроводов из стали на 1 м, Вт/м. при перепаде температуры Δt, 0 С
23,3 26,7 31,4
29,0 33,7 44,2
36,0 43,0 48,8
46,5 53,5 61,6
52,3 60,5 69,8
62,8 71,1 83,7
86,1 100,0 114,0
97,7 111,7 127,9
118,6 138,4 158,2
145,4 169,8 194,2
183,7 191,9 244,2

Расчет циркуляционного режима с насосным побуждением несложных (неразветвленных) сетей горячего водоснабжения можно производить по методу заданной кратности обмена воды в системе. По этому методу принято, что все теплопотери могут быть возмещены, если в системе в течение одного часа произойдет 2-4 – кратный обмен воды в циркуляционном контуре. Исходя из этих посылок вначале задаются кратностью обмена воды в контуре. Тогда объем воды, который должен быть заменен, будет равен вместимости подающего и циркуляционного трубопроводов. Производительность циркуляционного насоса, л/ч, будет равна:

q = m·V cir (13.6)

где m - кратность обмена воды в циркуляционном контуре системы.

Рабочий напор циркуляционного насоса определяется по приближенной формуле:

H r cir =2∑R i ·l i , (13.7)

где R i - удельные потери напора на 1 м длины трубопроводов сети горячего водоснабжения (при υ≈0,5 м/с) в зависимости от условного диаметра:

d...................... 15 20 25 32 40 50 70 80 100

R i ................................... 80 50 32 24 17 13 9 6,5 5

Удвоение потерь напора на трение произведено в счет местных сопротивлений.

В заключение расчета необходимо вычислить возможное остывание в циркуляционном контуре по формуле:

Δ t = Q ht / (m·V cir) (13.8)

Если будет выполнено условие: для лечебных учреждений Δt ≤ 8,5°С, а для жилых зданий Δt ≤ 10°С, то расчет циркуляции на этом заканчивается. В противном случае кратность обмена воды в циркуляционном контуре должна быть увеличена (в десятых долях кратности) с точностью до одного знака после запятой и расчет должен быть повторен.

В настоящее время горячее водоснабжение является неотъемлемой частью жизни большинства людей на планете. Без него не обходятся ни в одной квартире и жилом доме. Обустройство ГВС представляет собой непростой процесс, более того существует несколько видов подключения систем. В данной статье мы рассмотрим все системы горячего водоснабжения, расчёт и типы водонагревателей.

Вне зависимости от вида ГВС осуществляется подключение совокупности оборудования, которые предназначены для нагрева воды и распределения её по различным водозаборным точкам. В данном оборудовании нагревается вода до необходимой температуры, после чего с помощью насоса происходит подача в дом и по трубопроводу. Различают открытую и закрытую систему горячего водоснабжения.

Открытая система

Открытая система ГВС отличается наличием теплоносителя, циркулирующего в системе. Горячая вода поступает непосредственно из централизованной отопительной системы. Качество воды из крана и отопительного оборудования ни чем не отличается. В результате получается, что люди используют теплоноситель.

Открытая система названа так, ввиду того что подача горячей воды осуществляется из открытых кранов отопительной системы. Схема ГВС многоэтажного дома предусматривает применение открытого типа. Для частных домов этот тип является слишком затратным.

Следует знать, что экономия средств открытой системы происходит, за счёт не надобности водонагревательных устройств для нагрева жидкости.

Особенности открытой ГВС

При монтаже открытой ГВС необходимо учитывать принцип действия. Открытая ГВС бывает двух видов в зависимости от типа циркуляции и транспортирования теплоносителя к радиаторам. Различают открытые системы с естественной циркуляцией и с использования в данных целях насосного оборудования.

Естественная циркуляция осуществляется таким образом: открытая система исключает наличие избыточного давления, поэтому в самой высокой точке оно соответствует атмосферному, а в самой низкой показатель немного выше за счёт гидростатического действия столба жидкости. Благодаря небольшому напору происходит естественная циркуляция теплоносителя.

Принцип естественной циркуляции достаточно прост, благодаря разной температуре теплоносителя и соответственно разной плотности и массе, остывшая вода с низкой температурой и большей массой вытесняет горячую воду с меньшей массой. Так по-простому объясняется существование самотёчной системы, которую также называют гравитационной. Основной плюс такой системы абсолютная энергонезависимость, если параллельно работающие котлы для отопления не задействуют электричество.

Важно знать! Самотёчные трубопроводы делают с большим уклоном и диаметром.

Если естественная циркуляция невозможна, применяется насосное оборудование, которое повышает скорость протекания теплоносителя по трубопроводу и уменьшает время прогрева помещения. Циркуляционный насос производит движение теплоносителя со скоростью 0,3 — 0, 7 м/с.

Преимущества и недостатки открытой системы

Открытая ГВС всё ещё актуальна, благодаря в первую очередь энергонезависимости и других преимуществ:

  1. Простота заполнения открытой ГВС и спуска воздуха. Нет необходимости в контроле высокого давления и спускать дополнительно воздух, так как спуск осуществляется автоматически при наполнении через открытый расширительный бак.
  2. Простота осуществления подпитки. Поскольку не нужно следить за максимальным давлением. Также есть возможность доливать воду в бак даже ведром.
  3. Система вне зависимости от протечек исправно функционирует, так как рабочее давление не большое и наличие таких неполадок на него не влияет.

Среди недостатков отмечают необходимость контролировать уровень воды в резервуаре и постоянное пополнение его.

Закрытая система ГВС

Закрытая система основана на таком принципе: осуществляется забор холодной питьевой воды из центрального водопровода и нагрев её в дополнительном теплообменнике. После нагрева производится подача её по водозаборным точкам.

Закрытая система подразумевает отдельную работу теплоносителя и горячей воды, также она отличается наличием обратного и подающего трубопровода, которые используются для кольцевой циркуляции воды. Такая система обеспечит нормальный напор даже при одновременном использовании душа и раковины. Среди плюсов системы также отмечают простоту регулирования температуры горячей жидкости.

ГВС может быть циркуляционным и тупиковым. Тупиковая система состоит только из подающих вод труб, способ присоединения которых такой же как и в первом случае.

Преимуществом закрытой ГВС является снижение затрат за счёт обеспечения стабильной температуры. Есть возможность монтажа полотенцесушителя. В закрытой ГВС необходимы водонагреватели, виды которых мы рассмотрим далее.

Виды водоподогревателей

Все водоподогреватели классифицируют так:

  1. Проточные устройства. Такие нагреватели греют воду в постоянном режиме, не оставляя запаса. Поскольку вода отличается большой теплоёмкостью, для постоянного нагрева её требуется увеличенный расход энергии. Помимо этого фактора, проточный нагреватель должен моментально приводиться в рабочее состояние: при включении подавать горячую воду, при выключении — прекращать нагрев. К традиционным проточным нагревателям относят газовую колонку.
  2. Накопительные устройства. Отличаются медленным нагревом определённого объёма воды, при котором зачастую потребляется 1 КВт/час. Горячая жидкость используется по необходимости. Накопительные нагреватели срабатывают моментально после открытия крана, однако мощность намного меньше. Среди недостатков таких устройств также отмечают большие размеры, чем больше объём, тем габаритнее устройство.

Расчёт и рециркуляция ГВС

Расчёт систем горячего водоснабжения зависит от таких факторов: число потребителей, примерная частота пользования душем, число санузлов с ГВС, некоторые технические характеристики сантехнического оборудования, необходимая температура воды. Посчитав все эти показатели можно определить требуемый суточный объём горячей воды.

Рециркуляция воды в системе горячего водоснабжения обеспечивает обратную подачу жидкости с дальней точки водозабора. Она необходима при расстоянии от нагревателя до дальней водозаборной точки более 3 метров. Рециркуляция используется при помощи бойлера, а в случае при невозможности его применения, пускается напрямую через котёл.

Система горячего водоснабжения может двух видов, которые используются в зависимости от заданных параметров. В открытой системе применяется отопительный котёл, а в закрытой — водоподогреватель. В некоторых случаях необходимо дополнительно организовывать рециркуляцию воды. Предварительно перед монтажом и закупкой оборудования важно осуществить расчёт горячего водоснабжения.

Обеспечить горячей водой многоэтажный дом непросто, потому что в системе ГВС должна находиться вода под определенным давлением и с определенной температурой. Это первое. Второе: горячее водоснабжение многоквартирного дома – это длинный путь самой воды от котельной до потребителей, в котором встречается огромное количество различного оборудования, устройств и приборов. При этом подключение может производиться по двум схема: с верхней или нижней разводкой.

Схемы сетей

Итак, начнем с вопроса, как вода поступает в наши дома, имеется в виду горячая. Она движется от котельной к дому, и перегоняется насосами, установленными, как котельного оборудования. Двигается нагретая вода по трубам, которые называются теплотрассами. Они могут быть проложены над или под землей. И их обязательно теплоизолируют, чтобы снизить тепловые потери самого теплоносителя.

Кольцевая схема подключения

Труба доводится до многоквартирных домов, откуда производится разветвление трассы на меньшие участки, которые подают теплоноситель на каждое здание. Труба меньшего диаметра заходит в подвал дома, где разбивается на участки, которые доставляют воду до каждого этажа, а уже на этаже до каждой квартиры. Понятно, что такое количество воды не может потребляться. То есть, вся закачиваемая вода в ГВС не может потребляться, особенно это касается ночного времени. Поэтому прокладывается еще одна трасса, которая называется обраткой. По ней вода перемещается от квартир в подвал, а оттуда в котельную по отдельно проложенному трубопроводу. Правда, необходимо отметить, что все трубы (и обратки, и подачи) прокладываются по одной трассе.

То есть, получается так, что сама горячая вода внутри дома двигается по кольцу. И она постоянна находится в движении. При этом циркуляция горячей воды в многоквартирном доме производится именно снизу вверх и обратно. Но чтобы температура самой жидкости была постоянной на всех этажах (с небольшим отклонением), необходимо создать условия, при которых ее скорость была оптимальной, и она не влияла на снижение самой температуры.

Необходимо отметить, что сегодня к многоквартирным домам могут подходить раздельно трассы для ГВС и для отопления. Или будет подводиться одна труба с определенной температурой (до +95С), которая в подвале дома разделится на отопление и горячее водоснабжение.

Схема разводки ГВС

Кстати, обратите внимание на фото выше. В подвале дома по этой схеме установлен теплообменник. То есть, вода из трассы в системе горячего водоснабжения не используется. Она всего лишь нагревает холодную воду, поступающую из водопроводной сети. А сама система ГВС дома является отдельной трассой, несвязанной с трассой от котельной.

Домовая сеть является циркуляционной. И подачу воды в квартиры производит установленный в нее насос. Это на сегодняшний день самая современная схема. Ее положительная особенность – возможность контролировать температурный режим жидкости. Кстати, существуют строгие нормы температуры горячей воды в многоквартирном доме. То есть, она не должна быть ниже +65С, но и не выше +75С. При этом разрешаются небольшие отклонения в ту или другую сторону, но не больше 3С. В ночное время отклонения могут быть и 5С.

Почему именно эта температура

Здесь две причины.

  • Чем выше температура воды, тем быстрее в ней погибают болезнетворные бактерии.
  • Но приходится учитывать и тот факт, что высокая температура в системе ГВС – это ожоги при соприкосновении с водой или металлическими частями труб или смесителей. К примеру, при температуре +65С ожог можно получить за 2 секунды.

Температура воды

Кстати, надо отметить, что температура воды в системе отопления многоквартирного дома может быть разной, все зависит от различных факторов. Но она не должна превышать +95С для двухтрубных систем, а для однотрубных +105С.

Внимание! По законодательству определяется, что если температура воды в системе ГВС будет ниже нормы на 10 градусов, то оплата также снижается на 10%. Если она будет с температурой +40 или +45С, то оплата снижается до 30%.

То есть, получается так, что система водоснабжения многоквартирного дома, имеется в виду ГВС, это индивидуальный подход к оплате, зависящий от температуры самого теплоносителя. Правда, как показывает практика, об этом мало кто знает, поэтому споров обычно по данному вопросу никогда не возникает.

Тупиковые схемы

Существуют в системе ГВС и так называемые тупиковые схемы. То есть, вода поступает до потребителей, где она и остывает, если ею не пользоваться. Поэтому в таких системах очень большой перерасход теплоносителя. Такие разводки используются или в служебных помещениях, или в небольших по размерам домах – не более 4 этажей. Хотя все это уже в прошлом.

Оптимальным же вариантом является циркуляция. И самое простое – это ввод трубы в подвал, а оттуда по квартирам через стояк, который проходит по всем этажам. В каждом подъезде свой стояк. Доходя до верхнего этажа, стояк делает разворот и уже мимо всех квартир спускается в подвальное помещение, через которое выводится и подключается к обратному трубопроводу.

Тупиковая схема

Разводка в квартире

Итак, рассмотрим схему водоснабжения (ГВ) в квартире. В принципе, она ничем не отличается от холодного водопровода. И чаще всего трубы ГВС прокладываются рядом с элементами ХВС. Правда, есть некоторые потребители, которым горячая вода не нужна. К примеру, унитаз, стиральная или посудомоечная машины. Последние две сами нагревают воду до необходимой температуры.

Схема разводки труб ГВС и ХВС

Самое важное, что разводка водоснабжения в квартире (и ГВС, и ХВС) – это определенные нормы укладки самих труб. К примеру, если трубы двух систем прокладываются одна над другой, то верхняя должна быть от горячего водоснабжения. Если они прокладываются в горизонтальной плоскости, то правая должна быть от системы ГВС. В этом случае на одной стене она может оказаться в глубине штробы, а на другой, наоборот, ближе к поверхности. При этом прокладка трубопровода может быть скрытой (в штробах) или открытой, проложенной по поверхности стен или пола.

Заключение по теме

Кажущая простота горячего водоснабжения в многоквартирных домах определяется обывателями по разводки труб внутри квартир. На самом деле это достаточно большое разнообразие различных схем, в которых трубы протягиваются на несколько километров, начиная от котельной и заканчивая смесителем в квартире. И, как показывает практика, даже в старых домах сегодня производится реконструкция ГВС под новые усовершенствованные технологии, которые обеспечивают горячей водой и снижают потери самого тепла.

Не забудьте оценить статью.

Система горячего водоснабжения (ГВС) - сово-купность устройств, обеспечивающих нагрев холодной воды и распределение ее по водоразборным приборам.

Системы ГВС подразделяют на централизованные и мест-ные (децентрализованные).

В централизованных системах одна водонагревательная ус-тановка в котельной или ЦТП обслуживает горячей водой одно или несколько крупных зданий в пределах жилого микрорай-она, квартала или поселка. Все централизованные системы ГВС проектируют с циркуляционными трубопроводами для обеспечения потребителей горячей водой, так как без них в от-сутствие водоразбора вода в подающих линиях быстро остывает и потребитель вынужден сливать ее, теряя при этом воду и теп-лоту. Кроме того, в системах ГВС устанавливают полотенцесушители, которые необходимы для сушки белья и обогрева ван-ных комнат и не могут работать при отсутствии циркуляции.

Циркуляционные трубопроводы и циркуляционные насо-сы создают непрерывное движение воды (циркуляцию) по замкнутому контуру теплообменник - подающий трубопровод - водоразборный кран - циркуляционный трубопровод - тепло-обменник, поддерживая температуру горячей воды у водораз-борного крана 50-60 °С. При такой температуре большинство болезнетворных бактерий, содержащихся в воде, погибает (эф-фект пастеризации), пищевые жиры, масла и бытовые загряз-нения хорошо эмульгируют - растворяются в воде и смывают-ся потоком ее при мытье посуды и стирке белья. Для усиления этих процессов промышленность выпускает разнообразные мыла, синтетические моющие средства, чистящие порошки и эмульгаторы.

Для мытья тела люди обычно используют в процедурах ку-пания горячую воду температурой 35-40 °С в ванных и до 45 °С - при шаечном мытье в банях, разбавляя горячую пер-вичную воду холодной с помощью смесительных кранов и уст-ройств.

В последние годы в зданиях высотой 5 этажей и более часть подающих стояков (например, от 3 до 7 стояков одной секции жилого дома) объединяют в один водоразборный узел, назы-ваемый секционным узлом, с единым циркуляционным трубо-проводом. В зданиях высотой более 50 м (свыше 16 этажей) систему ГВС делят по вертикали на отдельные зоны с само-стоятельными разводками и отдельными стояками для каждой зоны, иногда даже с устройством специальных технических этажей. Это связано с ограничением допускаемого давления перед водоразборной и водозапорной арматурой до 0,6 МПа.

Местные (тупиковые) системы ГВС устраивают в индиви-дуальных домах (дачных, коттеджных, сблокированных) или квартирах. Радиус действия их невелик, приготовление горя-чей воды производят в небольших генераторах теплоты (элек-трические, газовые водонагреватели, малометражные котлы и т.п.). Часто такой генератор теплоты является общим и для системы отопления, и для системы ГВС; их называют двухкон-турными. Двухконтурного котла бывает достаточно, чтобы приготовить горячую воду на семью из 3-4 человек. Для боль-ших семей иногда к водогрейному котлу пристраивают емкост-ный бойлер.

На промышленных и коммунальных предприятиях (бани, прачечные, химчистки, бассейны) наряду со скоростными во-допроводящими установками нашли широкое применение па-роводяные подогреватели горячей воды.

Для внутренних трубопроводов холодной и горячей воды СНиП 2.04.01-85* рекомендует применять пластмассовые трубы и фасонные части из полиэтилена, полипропилена, по-ливинилхлорида, полибутилена, металлополимерные, из стек-лопластика и других пластмассовых материалов для всех сетей водоснабжения, кроме самостоятельной сети противопожар-ного водоснабжения.

Прокладка пластмассовых труб выполняется преимущест-венно скрытой - в плинтусах, штробах, шахтах и каналах в за-ливке пола. Допускается открытая прокладка подводок к сани-тарно-техническим приборам, а также в местах, где исключает-ся механическое повреждение пластмассовых трубопроводов. Для всех сетей внутреннего водопровода допускается приме-нять медные, бронзовые и латунные трубы, фасонные части, а также стальные трубы с внутренним и наружным защитным покрытием от коррозии.

Во избежание быстрого разрушения от внутренней корро-зии системы ГВС выполняют из оцинкованных труб с уклоном разводящих труб к стоякам не менее 0,002. При диаметрах труб более 150 мм в открытых системах теплоснабжения допускает-ся применение неоцинкованных черных труб.

Для сельскохозяйственных предприятий допускается при-менять асбестоцементные трубы. В системах ГВС и ХВС при-меняется арматура обычного общепромышленного назначе-ния, рассчитанная на рабочее давление до 0,6 МПа. Трубы со-единяют резьбой или сваркой в среде газообразного диоксида углерода. Для компенсации тепловых удлинений используют или естественные повороты труб, или специальные компенса-торы.

Запорную арматуру устанавливают на ответвлениях к от-дельным зданиям и сооружениям, на ответвлениях к секцион-ным узлам и на ответвлениях от стояков в каждую квартиру. Для ремонта отдельных стояков в их верхних и нижних точках устанавливается запорная арматура с пробками для спуска из стояков воды и впуска в них воздуха.

Нормы расхода воды, л, на 1 жителя жилых домов

Время водопотребления

В жилом доме квартирного типа

В жилом доме с повышен-ным уровнем благоустрой-ства

Общий рас-ход холод-ной воды

В том числе на горячее водоснабжение

Общий рас-ход холод-ной воды

В том числе на горячее водоснабже-ние

В средние сутки

В сутки наибольшего водо-потребления

В час наибольшего потребле-ния

Все трубопроводы системы ГВС, за исключением квартир-ных подводок и полотенцесушителей, должны иметь тепловую изоляцию. Толщина теплоизоляционного слоя конструкции должна быть не менее 10 мм, а теплопроводность его - не ме-нее 0,05 Вт/(м °С).

Норма расхода воды (в литрах на одного жителя), напри-мер, в жилом доме квартирного типа с централизованным го-рячим водоснабжением (с ванными длиной 1500-1700 мм, оборудованными душами) и в жилом доме с повышенными требованиями к благоустройству (при высоте здания 12 этажей и выше) составляет от 250 до 400 л в сутки.(таблица выше).

Физиологическая (питьевая) потребность человека состав-ляет от 5 л/сутки (в спокойном состоянии) до 10 л/сутки (при тяжелой физической работе).

Определение тепловых потоков на ГВС производится по СНиП 2.04.02-84.

Основные нагревательные приборы. В централизованных сис-темах горячего водоснабжения воду нагревают в водогрейных котлах, открытых баках или закрытых водоподогревателях, снабженных змеевиками.

Наиболее часто применяют систему горячего водоснабже-ния от парового котла и систему от теплосети.

Система горячего водоснабжения жилого дома с паровым котлом и горизонтальным водоподогревателем функциониру-ет следующим образом. От паросборника пар по паропроводу поступает в змеевик горизонтального емкостного водоподогревателя, где конденсируется, нагревая воду в водоподогревателе. Конденсат из змеевика через конденсационный трубо-провод поступает обратно в котел. Вода в водонагревателе на-ходится под давлением городского водопровода и нагревается до 70 °С. По подающему трубопроводу она поступает в верхний розлив, откуда по стоякам горячего водоснабжения подается через подводки горячей воды к санитарным приборам. Часть воды возвращается по обратному трубопроводу в водоподогре- ватель через нижний штуцер, что предотвращает остывание воды в подающей магистрали. По мере разбора горячей воды в водоподогреватель поступает холодная вода из водопроводной линии. На водоподогревателе устанавливают предохранитель-ный рычажный клапан со сливной трубой и термометр, а на котле - предохранительное выкидное приспособление, мано-метр, термометр и водомерное стекло.

Отечественная промышленность выпускает пароводяные скоростные водонагреватели МВН-1436 и МВН-1437 и водо-водяные секционные МВН-2052-62, предназначенные для по-догрева воды в системах отопления и горячего водоснабжения.

Водоподогреватели МВН-1436 и МВН-1437 состоят из кор-пуса, трубной системы, передней и задней водяных камер и колпака. Корпус, камеры и колпак - стальные. Трубная систе-ма состоит из стальных опорных решеток и пучка латунных трубок диаметром 16x1 мм или 16x0,75 мм. Подогреватели из-готовляют короткие - 2040 мм и длинные - 4080 мм. Водопо-догреватели диаметром 273 и 325 мм - двухходовые, диаметром 377 мм и более - четырехходовые

Водоподогреватели работают следующим образом. Нагре-ваемая вода поступает через нижний патрубок передней вход-ной камеры, проходит по латунным трубкам, подогревается и через верхний патрубок поступает в сеть с нужной температу-рой. Пар, подогревающий воду, подается в межтрубное про-странство.

Водоводяные водонагреватели МВН-2052-62 изготовляют разборные одно- и многосекционные, длинные и короткие. Секции соединяют между собой калачами на болтах. Секция состоит из корпуса (труба бесшовная) с приваренными к ней стальными трубными решетками и пучка латунных трубок диа-метром 16x0,75 мм. К корпусу приварены патрубки с фланцами для соединения секций по междутрубному пространству. Во-донагреватели рассчитаны на максимальную температуру се-тевой воды 150 °С и рабочее давление греющей и нагреваемой воды до 1 МПа.

Схему с пароводяным скоростным водоподогревателем при-меняют для систем горячего водоснабжения больших жилых домов, бань, прачечных и других крупных потребителей горя-чей воды. В водонагревателе вода, поступающая в домовую сеть через ввод, нагревается до требуемой температуры. Скоро-стной водонагреватель является проточным, расходуемая вода протекает со значительной скоростью через нагревательные трубки - трубчатые нагревательные элементы, которые в свою очередь подогреваются водой из теплосети, проходящей внут-ри корпуса водонагревателя и омывающей их. От водонагрева-теля горячая вода подается в систему горячего водоснабжения по трубопроводу. На подающем трубопроводе теплосети уста-новлен регулятор, автоматически поддерживающий постоян-ный расход воды из тепловой сети, и воздухоотводчик. Холод-ная вода в водонагреватель поступает из водопровода. На узле управления у ввода имеются задвижки для отключения трубо-провода системы отопления и отдельных частей узла. Расход воды в сети учитывают при помощи водомера.

Чтобы вода из системы отопления не поступала в трубопро-вод теплосети, стоят обратные клапаны. Для измерения давле-ния и температуры воды в отдельных точках узла управления установлены манометры и термометры. Под манометрами устанавливают контрольные трехходовые краны, которые ввернуты в штуцеры трубы. Высокотемпературную воду из те-плосети от ввода смешивают с частью охладившейся воды из обратной линии системы отопления элеватором, у которо-го установлены задвижки, регулирующие температуру сме-шанной воды. Смешанная вода поступает к главному стояку в систему отопления и возвращается в обратный трубопровод те-плосети по обратному трубопроводу из системы отопления. Грязевик служит для улавливания грязи из обратного трубо-провода системы отопления. Для учета расходуемой теплоты служит тепломер. На этой линии установлен регулятор подпора.

Системы горячего водоснабжения бывают:

  • с тупиковым трубопроводом, где при малом разборе горячей воды или отсутствии водоразбора вода быстро остывает. По-этому такую схему применяют в малоэтажных жилых зданиях с сетью небольшой протяженности, или в системах, где воду раз-бирают постоянно (бани, прачечные и т.д.);
  • с циркуляционными стояками; такие схемы применяют там, где не допускается остывания воды в трубах, например в мно-гоэтажных жилых зданиях, гостиницах.

Однотрубные системы централизованного горячего водоснаб-жения в настоящее время широко применяют в жилых зданиях (рисунок ниже). В этих системах для зданий 5-9 этажей стояки в пре-делах секции вверху соединяются между собой, причем все стояки, кроме одного, присоединяются к подающей магистра-ли 2, а один опускной стояк - к циркуляционной магистрали 3. К опускному стояку так же, как и к подающему, присоединяются приборы для водоразбора горячей воды. Для обеспечения равномерной циркуляции воды в системах горячего водоснаб-жения зданий, присоединяемых к одному центральному теп-ловому пункту, на опускном стояке предусматривается установка диафрагмы 1.

Секционный узел однотрубной системы горячего водоснабжения

1 - диафрагма; 2 - подающая транзитная магистраль; 3 - циркуляционная транзитная Магистраль; 4 - пробковый кран; ЦВ - централизованное водоснабжение; ГВ - горячее водоснабжение; i - уклон трубы

Для жилых зданий более 9 этажей все стояки горячего водо-снабжения присоединяют к подающей магистрали и прокла-дывают самостоятельный циркуляционный стояк, который наверху присоединяется к перемычке между всеми подающи-ми стояками, а внизу - к циркуляционной магистрали. В одно-трубных системах подающая магистраль рассчитывается из ус-ловия подачи расчетного количества горячей воды. Воздухоудаление из систем горячего водоснабжения осуществляется через воздухосборник или за счет подсоединения ответвления к приборам последнего этажа к верхней отметке стояка. У ос-нования каждого стояка и на перемычках между стояками ус-танавливают отключающую арматуру.

При кольцевой схеме стояки принимаются одного диаметра по всей высоте здания и обычно для зданий высотой до пяти этажей включительно равны 25 мм, а для зданий большей этажности - 32 мм.

Водонагревательные аппараты, нагревающие воду для бы-товых нужд, бывают: электрические, газовые, твердотоплив-ные, косвенного нагрева горячей воды от теплоносителя систе-мы отопления.

Водонагреватели подразделяются на:

  • проточные, где нагрев воды осуществляется по мере ее продви-жения мимо теплопередающих элементов (электрические ТЭНы, медные трубы, пластинчатые теплообменники);
  • накопительные, где нагрев воды происходит в накопительных частях прибора при помощи теплопередающих элементов.

Все водонагреватели можно подразделить на следующие ви-ды: газовые проточные (газовые колонки), газовые накопитель-ные, электрические проточные, электрические накопительные (со встроенным змеевиком и без него), электрические накопи-тельные с топкой для твердого топлива, косвенного нагрева.

Монтаж трубопровода ГВС осуществляют из узлов и деталей, заготовленных в ЦЗМ по замерным эскизам или монтажным проектам (рисунок ниже).

Схема монтажа водопроводного стояка

1 - подводка к умывальнику; 2 - подводка к бачку; 3 - муфта; 4 - контргайка; 5 - длинная резьба; 6, 9 - тройники; 7 - пробка; 8 - вентиль

Стояки горячего водоснабже-ния монтируют справа по отно-шению к стоякам холодного во-доснабжения. Циркуляционный стояк прокладывают справа от го-рячего стояка. Расстояние между осями стояков составляет 80 мм.

Горизонтальную разводку трубо-провода от стояков к приборам следует вести у пола: трубопровод холодной воды на 100 мм выше чистого пола, а горячей воды - на 200 мм. Вертикальные подводки к приборам нужно вести так же, как и стояки: горячий - справа, хо-лодный - слева. Трубопровод ук-репляют на стене при помощи хо-мутиков.

Трубопроводы горячего водо-снабжения диаметром до 70 мм изготовляют из оцинкованных во-догазопроводных труб. В качестве уплотнительного материала ис-пользуют льняную прядь, пропи-танную свинцовым суриком, замешенным на натуральной оли-фе. Трубы ГВС диаметром до 32 мм прокладывают на расстоянии 35 мм от поверхности штукатурки до оси трубы. Оцинкованные тру-бы собирают на резьбе при помо-щи фитингов из ковкого чугуна или стальных оцинкованных. До-пускается электросварка оцинко-ванных труб в среде углекислого газа. При сварке труб диаметром до 32 мм применяют надвижные муфты (для сохранения живого сечения труб); трубы диаметром более 32 мм сваривают встык. Не допускается газовая сварка вследствие значительного выгорания цинка. Неоцинкованные трубы соединяют преимущественно сваркой.

Повороты магистральных трубопроводов выполняют путем гибки. На трубах малого сечения допускается установка уголь-ников под утлом 90°. В местах перекрытий, внутренних стен и перегородок трубопроводы заключают в гильзы.

Трубопроводы ГВС укладывают выше трубопроводов хо-лодного водоснабжения. Для спуска воды из системы и выпус-ка воздуха трубы укладывают с уклоном 0,002-0,005.

Водонагреватели горизонтального типа устанавливают на металлическом каркасе или на кирпичных столбиках с подъе-мом 10-15 мм в сторону верхнего штуцера. Между водоподогревателем и кирпичными опорами прокладывают асбестовый картон толщиной 5 мм, чтобы металл в местах соприкоснове-ния с кирпичной кладкой не ржавел и водоподогреватель при нагревании мог свободно удлиняться, не разрушая кладку столбиков. На водоподогревателе устанавливают термометр и предохранительный клапан.

Паровые водогрейные котлы монтируют, устанавливая на них дополнительно паросборники и паровую арматуру.

Гидравлическое и тепловое испытания сети горячего водоснаб-жения производят по окончании монтажа. Сеть испытывают на гидравлическое давление выше рабочего на 0,5 МПа, но не более 1 МПа. Перед испытанием из системы удаляют воздух. Испыта-ние продолжается 10 мин, в течение которых давление не должно упасть более чем на 0,05 МПа. При тепловом испытании системы горячего водоснабжения воду нагревают до температуры 50-60 °С и проверяют работу системы при числе действующих при-боров, предусмотренных рабочей документацией. Отклонение температуры от расчетной не должно превышать 5 °С.

Теплообменники испытывают гидравлическим давлением, превышающим в 1,5 раза наибольшее рабочее давление, но не менее 0,3 МПа для паровой части и не менее 0,4 МПа для водя-ной части. Давление не должно падать при испытании в тече-ние 5 мин. После проверки и испытания системы водоснабже-ния баки-теплообменники и трубопроводы горячего водо-снабжения изолируют для уменьшения потерь теплоты.

Наиболее простыми по устройству и дешевыми по первоначальной стоимости являются бесциркуляционные (тупиковые) системы, состоя­щие только из подающих трубопроводов (рис. 4.1,а). Основной недоста­ток таких систем состоит в остывании воды в трубопроводах при пере­рывах в водоразборе или его малой величине. Открывая кран после пе­рерыва в водоразборе, потребитель получает воду с пониженной темпе­ратурой и начинает сливать эту воду в канализацию до появления воды с нужной ему температурой. Такие сливы при общем ухудшении обеспе­чения потребителя горячей водой приводят к перегрузке канализации и бесполезным потерям воды и тепла. Из-за указанных недостатков бес­циркуляционные системы устраивают только в тех случаях, когда воз­можные сливы воды в канализацию невелики, а именно: при длительном непрерывном разборе воды (в банях, в технологических установках) и при малом протяжении сети. Во всех остальных случаях, особенно там, где требуется непрерывное обеспечение потребителей горячей водой (жи­лые здания, больницы, поликлиники и т. п.), устраиваются более слож­ные циркуляционные системы (рис. 4.1,6). В таких системах при отсут-

Ствии водоразбора находящаяся в трубах*вода не останавливается, а непрерывно перемещается, проходя через подогреватель, чем обеспечи­вается заданная температура воды вблизи точек водоразбора. В зави­симости от назначения систем циркуляция воды в них может осуществ­ляться или непрерывно в течение суток, или периодически перед нача­лом длительного водоразбора (например, в душевых с периодическим разбором воды).

В системах с поверхностными подогревателями циркуляция, как пра­вило, обеспечивается центробежными насосами; смешение рециркуля­ционной воды с нагреваемой водопроводной водой осуществляется по схемам, рассмотренным в гл. 2. В отдельных случаях циркуляция воды в системах горячего водоснабжения может обеспечиваться действием гравитационных сил, что целесообразно в мелких системах или-в систе­мах многоэтажных и малопротяженных зданий (в зданиях типа «баш­ня») при дополнительной застройке такими зданиями жилых кварталов и невозможности (или нерациональности) присоединения их систем го­рячего водоснабжения к существующим квартальным системам. Вопро­сы надлежащей организации циркуляции воды в системах горячего во­доснабжения, присоединенных к открытым системам теплоснабжения, рассмотрены в § 9.

По расположению подающей (разводящей) магистрали внутри дома различают системы с верхней (см. рис. 4.1) и нижнрй (рис. 4.2) развод­кой. Верхнюю разводку наиболее час то применяют при установке открытых (верхних) баков-аккумуляторов и при наличии в здании верхнего техническо­го этажа или чердака. Циркуляцион­ную магистраль прокладывают в этом случае в подвалах, а при их отсутствии в подпольных каналах. При наличии подвалов предпочтительнее нижняя разводка как более удобная для эксплуатационного обслуживания си­стемы.

В зданиях высотой более 50 м (свы­ше 16 этажей) систему горячего водо­снабжения делят по вертикали на зоны

С самостоятельными разводками и отдельными стояками для каждой зоны. Это связано в основном с ограничением допускаемого давления на водоразборную и водозапорную арматуру, которая в обычном исполне­нии выдерживает давление до 0,6 МПа.

Согласно СНиП П-34-76, в ванных и душевых комнатах ряда зданий и"помещений (жилые здания, лечебно-профилактические учреждения, дома отдыха, учреждения социального обеспечения, школы и учрежде­ния по воспитанию детей, гостиницы) должны устанавливаться полотен - цесушители, которые помимо своего прямого назначения являются еще и нагревательными приборами, обеспечивающими в этих комнатах по­вышенную температуру воздуха. Присоединяются полотенцесушители к циркуляционным или подающим стоякам (см. далее о водоразборных узлах). В тех случах, когда системы не имеют циркуляционных трубо­проводов, нормами допускается присоединение полотенцесушителей к системе отопления с устройством отдельной ветви и обеспечением круг­логодовой циркуляции ВОДЫ ПО ЭТОЙ ВеТВ"И.

Подающий стояк с ответвлениями (подводками) к водоразборным приборам каждой квартиры в тупиковых системах и сочетание подаю­щего и циркуляционного стояков, включая полотенцесушители и под­водки в квартиры, в циркуляционных системах образуют водоразборный узел. Устройство водоразборных узлов изменялось и продолжает изме­няться в связи с появлением новых конструктивных решений с&мих зда­ний, объединения в единую систему нескольких внутренних систем (квартальные системы), дальнейшей индустриализации строительства и, в частности, применения сборного домостроения с изготовлением са - нитарно-технических кабин на домостроительных комбинатах.

На рис. 4.3 приведены схемы водоразборных узлов с парными (по­дающим и циркуляционным) стояками, отличающиеся способом присое­динения полотенцесушителей к стоякам. Параллельное присоединение полотенцесушителей к стоякам (рис. 4.3,а) сложно в монтаже и приво­дит к образованию множества циркуляционных колец, при котором рас­пределить без превышения расчетный циркуляционный расход воды между отдельными приборами не удается даже при наличии перед каж­дым полотенцесушителем регулировочных кранов. Последовательное присоединение полотенцесушителей по схемам рис. 4.3,6 и в проще для

Монтажа н первоначальной регулировки расхода циркуляционной воды по отдельным узлам. Схема рис. 4.3,в с полотенцесушителями на цирку­ляционном стояіке экономичнее схемы рис. 4.3,6 с полотенцесушителями на подающем стояке. При одинаковой температуре воды у основания стояков для достижения одинаковой температуры воды у верхнего при­бора через узел по схеме рис. 4.3,6 потребуется пропускать больше цир­куляционной воды, так как остывание воды при прохождении ее по стояку с полотенцесушителями будет больше, чем остывание воды при прохождении ее по стояку без полотенцесушителей.

Увеличение объема нового строительства и переход к зданиям повы­шенной этажности вызвали появление новых, менее трудоемких реше­ний по устройству водоразборных узлов. На рис. 4.4 приведен узел из двух закольцованных стояков, один из которых является подающим (присоединен к подающей магистрали), а другой - водоразборно-цнр - куляционным (присоединен к циркуляционной магистрали). Оба стояка унифицированы, т. е. собраны из труб одного диаметра. Протяженность чисто циркуляционной части второго стояка очень мала и равна участку трубы от конечного (нижнего) ответвления к прибору до циркуляцион­ной магистрали. Унификация стояков в узле, облегчая и удешевляя монтаж, увеличивает расчетный циркуляционный расход воды в систе­ме, что является отрицательной стороной такого способа устройства уз­лов. Теоретически при одинаковых по диаметрам труб узлах расход циркуляционной воды через ближайший к началу системы узел должен быть несколько меньше расхода через дальний узел, так как при одина­ковых теплопотерях стояками в ближайший узел поступает менее ох­лажденная в разводящих трубопроводах вода. Фактически же при уни­фицированных узлах, т. е. узлах равного гидравлического сопротивления, через ближайший узел проходит больше циркуляционной воды, чем че­рез дальний узел. Происходит это вследствие увеличения к началу сис­темы разности давлений в подающей и циркуляционной магистралях. Уменьшить ненужное увеличение расхода циркуляционной воды через ближайшие к началу системы узлы, а следовательно, уменьшить и об­щий расчетный расход циркуляционной воды можно увеличением гид­равлического сопротивления первых по ходу воды узлов. Но так как диаметры подающих (водоразборцых) стояков уменьшить нельзя, ибо эти диаметры выбираются по максимальному расходу воды на водораз - бор, то увеличить гидравлическое сопротивление водоразборного узла можно только или уменьшением диаметра труб чисто циркуляционного участка водоразборно-цнркуляционного стояка (см. рис. 4.4), или уста­новкой на этом"участке стояка дроссельной шайбы. Как известно, мини­мальный диаметр выпускаемых труб равен 15 мм, а пропускное отверс­тие шайб, применяемых в горячем водоснабжении, не делают менее 10 мм во избежание его засорения. При указанных ограничениях оба упомянутых решения не всегда позволяют получить желаемое увеличе­ние гидравлического сопротивления парнозакольцованных стояков в циркуляционном режиме.

В новых конструктивных решениях водоразборных узлов (рис. 4^5) повышение их гидравлического сопротивления в циркуляционном режи­ме достигается или кольцеванием поверху нескольких подающих стоя­ков и превращением одного стояка из группы закольцованных стояков в циркуляционно-водоразборный стояк,-или устройством для группы закольцованных стояков дополнительного чисто циркуляционного стоя­ка. Последнее решение (рис. 4.5,6) позволяет наиболее просто осущест­вить увеличение гидравлического сопротивления узла, но при этом не­сколько осложняется монтаж системы, особенно при наличии стандарт­ных санитарно-технических кабин: появляются дополнительные работы по монтажу самого стояка и пробивки для него отверстий в перекрыти-

Ях этажей. Такого рода работы отсутствуют при наличии в группе за­кольцованных стояков одного водоразборно-циркуляционного стояка (рис. 4.5,а), что делает такое решение более соответствующим инду­стриальному способу работ. Потери давления в таком уз­ле в циркуляционном режиме увеличиваются в результате пропуска че­рез один водоразборно-циркуляционный стояк суммарного циркуляци­онного расхода воды от нескольких подающих стояков и могут быть до­полнительно увеличены одним из тех приемов, о которых упоминалось выше: уменьшением диаметра чисто циркуляционной части водоразбор­но-циркуляционного стояка «ли установкой на этой части стояка дрос­сельной шайбы.

Применяемое в последние годы кольцевание подающих стояков поз­волило несколько уменьшить их диаметры. Так ікак одновременный мак­симальный водоразбор из всех закольцованных стояков очень мало ве­роятен, то при максимальной загрузке одного из закольцованных стоя­ков поступление в него воды может происходить не только непосредст­венно из подающей разводящей трубы, но и через соседние, малозагру - женные в этот момент времени, стояки и верхнюю перемычку между стояками.

В закрытых системах теплоснабжения в последние 15-20 лет полу­чили широкое распространение квартальные (мцкрорайонные) системы горячего водоснабжения. Причиной появления таких систем послужила несколько повышенная звукопроводность жилых зданий в первый пе­риод развития сборного домостроения, при которой оказалось невоз­можным размещение подогревательных установок в подвалах зданий из-з-а шума, создаваемого циркуляционным насосом. В результате воз­никли выносные подогревательные установки, размещаемые в специаль­ных строениях и обслуживающие несколько зданий. Такие групповые подогревательные установки получили название центральных тепловых пунктов - ЦТП, а подоіревательньїе установки, размещаемые в подва­лах зданий (там, где это возможно) и обслуживающие только одно зда­ние, стали называть индивидуальными тепловыми пунктами - ИТП. Проведенное позже технико-экономическое сопоставление ЦТП и ИТП показало известное экономическое преимущество центральных тепловых пунктов и позволило установить их оптимальную мощность, определяе­мую в 50-100 ГДж/ч.

Различают системы горячего водоснабжения еще и по наличию или отсутствию в них баков-аккумуляторов горячей воды. Аккумуляторы позволяют уменьшить расчетный расход тепла на приготовление быто­вой воды, снижая его от максимального часового до среднечасового в течение суток. Это удешевляет не только источник тепла, но и тепловые сети между источником тепла и местом присоединения аккумулятора к тепловой сети. В закрытых системах теплоснабжения дополнительно

Рис 4 6 Схемы включения аккумуляторов Я - подогреватель, А - аккумулятор; Я - зарядочно-циркуля-

Ционныи насос, Я, - зарядочный насос Яа - дополнительный циркуляционный насос, п - дополнительный подогреватель циркуляционной воды

Уменьшается еще и поверхность нагрева подогревателей водопроводной воды. Однако аккумуляторы требуют дополнительных затрат на их из­готовление и установку, в связи с чем вопрос о целесообразности их при­менения должен решаться на основе результатов соответствующих тех­нико-экономических расчетов.

В закрытых системах теплоснабжения аккумуляторы устанавлива­ются в ЦТП или ИТП, в открытых системах теплоснабжения - у источ­ника тепла и у отдельных абонентов (в ИТП). В местных системах го­рячего водоснабжения аккумуляторы могут располагаться в верхней или нижней точке системы. По принципу аккумуляции тепла аккумуля­торы могут быть с постоянной температурой и переменным объемом во­ды или с переменной температурой и постоянным объемом воды.

Различают аккумуляторы й по давлению находящейся в них воды: открытые - сообщающиеся с атмосферой; закрытые - находящиеся под давлением. На рис. 4.6 приведены различные схемы включения аккуму­ляторов в системы.

В верхнем открытом баке-аккумуляторе (рис. 4.6,а) при среднем во­доразборе уровень воды в баке не изменяется: сколько воды уходит из бака на водоразбор и циркуляцию, столько же поступает в бак от подо­гревателя. При водоразборе более среднего объем волы в баке умень­шается, при водоразборе менее среднего объем воды в баке увеличива­ется. При отсутствии водоразбора через подогреватель и бак прохоаит только циркуляционный расход.

Недостаток схемы с открытым нижним баком-аккумулятором (рис. 4.6,6) состоит в потере давления исходной воды и необходимости установки специального насоса для подкачки воды в систему. Схема применяется при малом давлении воды перед подогревателем или при использовании термальных вод с малым давлением воды на выходе из скважины.

При низкорасположенном напорном баке (рис. 4.6,в) насос и диа­метры труб на участке 1 - Н - П - 2 подбираются так, чтобы при сред­нечасовом расходе воды потери давления на этом участке, включая по­
тери давления в подогревателе, были равны разности давлений, созда­ваемой насосом, т. е. чтобы при среднечасовом расходе воды разность давлений в точке 2 ив точке 1 была равна нулю. Следовательно, при среднем водоразборе#движение воды через аккумулятор и по циркуля­ционным трубопроводам отсутствует.

Допустим, что такое состояние системы наступило после периода большого водоразбора и весь объем бака-аккумулятора оказался запол­ненным холодной водой. Если теперь водоразбор станет меньше средне­часового, то количество воды, протекающей по участку 1-Н- П-2, также уменьшится и станет меньше среднечасового, но больше водораз­бора. При этом потери давления на участке 1-Н - П-2 станут мень­ше разности давлений, создаваемой насосом, и давление в точке 2 ста­нет больше, чем давление в точке 1 начнется движение воды и по цир­куляционным трубам, и через аккумулятор. Холодная вода из нижней части аккумулятора будет уходить и смешиваться с поступающей водо проводной водой, а верхняя часть аккумулятора будет заполняться го­рячей водой. Так как плотность горячей воды меньше плотности холод­ной воды, то перемешивания воды в аккумуляторе не произойдет.

Процесс зарядки аккумулятора и циркуляция воды в системе усили­ваются с уменьшением! водоразбора и достигают наибольшей интенсив­ности при отсутствии водоразбора (например, в жилых зданиях ночью), а затем при последующем возрастании водоразбора начинают замед­ляться. В результате когда водоразбор снова достигает среднечасовой величины, весь аккумулятор оказывается заполненным горячей водой. При дальнейшем увеличении водоразбора расход воды на участке 1-Н - П-2 становится больше среднечасового, но меньше водоразбо­ра, потери давления на участке 1 - II - П - 2 начинают превышать раз­ность давлений, создаваемую насосом, и давление в точке 2 становится меньше давления в точке 1. В нижнюю часть аккумулятора начинает поступать холодная вода, а горячая вода из верхней части аккумулято­ра уходит в систему. Во избежание проникания холодной воды в цирку­ляционные трубопроводы (так называемого «опрокидывания» циркуля­ции) на циркуляционном трубопроводе устанавливается обратный кла­пан.

Существенным недостатком схемы, показанной на рис. 4.6,в, являет­ся периодическая pa6oja циркуляции, которая осуществляется только при водоразборах меньше среднечасового.

Для более надежного обеспечения циркуляции, что является совер­шенно необходимым в протяженных (например, квартальных) системах, А. В. Хлудовым была предложена несколько иная схема включения нижнего аккумулятора (рис. 4.6,г). По этой схеме, показавшей надеж­ную работу циркуляции на практике, предусматривается дополнитель­ная установка самостоятельного циркуляционного насоса (кроме заря­дочного) и небольшого отдельного подогревателя для подогрева цирку­ляционной воды. Принцип же зарядки и разрядки аккумулятора остает­ся таким же, как и при схеме на рис. 4.6,в.

В небольших тупиковых системах периодического действия, напри­мер в системах душевых промышленных предприятий, применяют обыч­но аккумуляторы продавливания со встроенным (рис. 4.7,а) или вынос­ным (рис. 4 7,6) подогревателем. Встроенные подогреватели имеют бо­лее развитую поверхность нагрева (по сравнению с выносными), что обусловливается малыми коэффициентами теплопередачи в них вслед­ствие конвективного характера движения воды около поверхности на­грева. При непрерывном, но неравномерном отборе воды из аккумуля­тора продавливания температура выходящей из него воды неодинакова во времени, что является следствием температурного расслоения воды в объеме аккумулятора, которое происходит, когда количество отобранно-

Го из аккумулятора тепла превышает теплопроизводительность подогре­вателя и на место ушедшей из аккумулятора горячей воды в него входит вода с пониженной температурой. При периодическом расходе горячей воды (например, при работе душевых между сменами) более целесооб­разны аккумуляторы со встроенными подогревателями, в которых вода благодаря конвективным токам перемешивается и приобретает нужную температуру за время отсутствия водоразбора. Для тех же целей при аккумуляторах с выносным подогревателем требуется небольшой заря­дочный насос (рис. 4.7,в).