Ухудшение экологии, рост цен на энергоносители, стремление к автономности и независимости от прихотей государственных мужей - вот лишь несколько факторов, заставляющих самых закоренелых обывателей обращать мечтательные взгляды в сторону альтернативных источников энергии. У большинства наших соотечественников мысли о «зелёной» энергетике так и остаются идеей фикс - сказываются высокие цены на оборудование, и, как следствие, нерентабельность затеи. Но ведь никто не запрещает изготовить установку для получения бесплатной энергии самостоятельно! Сегодня мы расскажем о том, как своими руками построить солнечную батарею и рассмотрим перспективы её использования в быту.

Солнечная батарея: что это такое

Человечество загорелось идеей трансформации солнечного излучения в электрическую энергию с 30-х годов прошлого века. Именно тогда учёные из Академии наук СССР заявили о создании полупроводниковых медно-таллиевых кристаллов, в которых под действием световых лучей начинал протекать электрический ток. Сегодня это явление известно как фотоэлектрический эффект и широко используется как в гелиоэлектрических установках, так и в разнообразных датчиках.

Первые солнечные батареи известны ещё с 50-х годов прошлого века

Сила тока одного фотоэлемента измеряется в микроамперах, поэтому для получения сколь-нибудь значимой электрической мощности их объединяют в блоки . Множество таких модулей и составляют основу солнечной батареи (СБ), которую можно использовать для подключения различных электронных устройств. Если же говорить о законченном устройстве, которое можно установить под открытым небом, то корректнее говорить о солнечной панели (СП) с конструкцией, защищающей сборку фотоэлектрических модулей от внешних факторов.

Надо сказать, что КПД первых электрических гелиосистем не достигал и 10% - сказывались как недостатки полупроводниковой технологии, так и неустранимые потери, связанные с отражением, рассеиванием или поглощением светового потока. Десятилетия упорного труда учёных дали свой результат, и сегодня КПД самых современных солнечных батарей достигает 26%. Что же касается перспективных разработок, то здесь он ещё выше - до 46%! Конечно, внимательный читатель может возразить, что другие генераторы энергии работают с энергоэффективностью 95–98%. Тем не менее не следует забывать, что речь идёт о совершенно бесплатной энергии, величина которой в солнечный день превышает 100 Вт на один кв. м земной поверхности в секунду.

Современные солнечные панели генерируют электроэнергию в промышленных масштабах

Полученная с помощью солнечных панелей электроэнергия может использоваться аналогично той, что получают на обычных электростанциях - для питания различных электронных устройств, освещения, отопления и т. д. Единственное отличие, которое состоит в том, что на выходе фотоэлектронного модуля присутствует постоянный, а не переменный ток, на самом деле является преимуществом. Всё дело в том, что любая гелиосистема работает только в течение светового дня, причём её мощность очень сильно зависит от высоты солнца над горизонтом. Поскольку ночью СБ работать не может, электроэнергию приходится накапливать в аккумуляторах, а они-то все как раз и являются источниками постоянного тока.

Устройство и принцип действия

Принцип действия электрической батареи базируется на таких физических явлениях, как полупроводимость и фотоэлектрический эффект. В основе любого солнечного элемента лежат полупроводники, атомы которых испытывают недостаток в электронах (p-тип проводимости), либо имеют их избыток (n-тип). Другими словами, используется двухслойная структура с n-слоем в качестве катода и p-слоем в качестве анода. Поскольку силы удержания «лишних» электродов в n-слое ослаблены (у атомов не хватает на них энергии), то они легко выбиваются из своих мест при бомбардировке фотонами света. Далее электроны перемещаются в свободные «дырки» p-слоя и через подключённую электрическую нагрузку (или аккумулятор) возвращаются к катоду - вот так и течёт электрический ток, спровоцированный потоком солнечного излучения.

Преобразование солнечной энергии в электрическую возможно благодаря фотоэлектрическому эффекту, который описал в своих работах Эйнштейн

Как уже отмечалось выше, энергия от одного фотоэлемента крайне мала, поэтому их объединяют в модули. Последовательным подключением нескольких таких блоков наращивают напряжение батареи, а параллельным увеличивают силу тока. Таким образом, зная электрические параметры одной ячейки можно собрать батарею требуемой мощности.

Полученную от солнечной батареи электроэнергию можно накапливать в аккумуляторах и после преобразования в напряжение 220 В использовать для питания обычных бытовых прибораз

Для защиты от атмосферного воздействия полупроводниковые модули устанавливают в жёсткий каркас и закрывают стеклом с повышенным светопропусканием. Поскольку солнечную энергию можно использовать лишь в течение светового дня, то для её накопления используются аккумуляторы - расходовать их заряд можно по мере необходимости. Для повышения напряжения и его адаптации в соответствии с потребностями бытовых приборов используются инверторы.

Видео: как работает солнечная панель

Классификация фотоэлектрических модулей

Сегодня производство солнечных батарей идёт двумя параллельными путями. С одной стороны на рынке присутствуют фотоэлектрические модули, созданные на основе кремния, а с другой - плёночные, созданные с использованием редкоземельных элементов, современных полимеров и органических полупроводников.

Популярные сегодня кремниевые фотоэлементы подразделяются на несколько типов:

  • монокристаллические;
  • поликристаллические;
  • аморфные.

Для использования в самодельных солнечных батареях лучше всего использовать модули из поликристаллического кремния. Хоть КПД последних и ниже, чем у монокристаллических элементов, но зато на их работоспособность не так сильно влияет загрязнённость поверхности, низкая облачность или угол падения солнечных лучей.

Отличить поликристаллические кремниевые модули от монокристаллических несложно - первые имеют более светлый синий оттенок с выраженными «морозными» узорами на поверхности. Кроме того, тип фотоэлектрических пластин можно определить по их форме - монокристалл имеет скруглённые края, тогда как его ближайший конкурент (поликристалл) представляет собой выраженный прямоугольник.

Что же касается батарей из аморфного кремния, то они ещё менее зависимы от погодных условий и за счёт своей гибкости практически не подвержены риску повреждений при сборке. Тем не менее использование их в собственных целях ограничивается как достаточно низкой удельной мощностью на 1 квадратный метр поверхности, так и по причине высокой стоимости.

Кремниевые солнечные элементы представляют собой самый распространённый класс электрических фотопластин, поэтому они чаще всего используются для изготовления самодельных устройств

Появление плёночных фотоэлектрических модулей обусловлено как необходимостью в снижении стоимости солнечных батарей, так и потребностью получить более производительные и долговечные системы. Сегодня промышленность осваивает выпуск тонких гелиоэлектрических модулей на основе:

  • теллурида кадмия с КПД до 12% и стоимостью 1 Вт на 20–30% ниже, чем у монокристаллов;
  • селенида меди и индия - КПД 15–20%;
  • полимерных соединений - толщина до 100 нм, с КПД - до 6%.

О возможности использования плёночных модулей для постройки электрической солнечной станции своими руками говорить пока ещё рано. Несмотря на доступную стоимость, изготовлением теллуридо-кадмиевых, полимерных и меде-индиевых фотоэлементов занимаются лишь отдельные компании.

Такие достоинства плёночных фотоэлементов, как высокий КПД и механическая прочность позволяют с полной уверенностью говорить, что за ними - будущее солнечной энергетики

Хоть в продаже и можно найти батареи, созданные по плёночной технологии, в большинстве своём они представлены в виде готовых изделий. Нам же интересны отдельные модули, из которых можно построить недорогую самодельную солнечную панель - на рынке они пока ещё в дефиците.

Сводные данные по КПД солнечных элементов, которые выпускаются промышленностью, представлены в таблице.

Таблица: КПД современных солнечных батарей

Где можно взять фотоэлементы и можно ли их заменить чем-то другим

Купить пригодные для сборки солнечной панели монокристаллические или поликристаллические пластины сегодня не является проблемой. Вопрос в том, что сама идея самодельного генератора бесплатного электричества предполагает результат, который будет значительно дешевле заводского аналога. Если же покупать фотоэлектрические модули на месте, то много сэкономить не получится.

На зарубежных торговых площадках солнечные элементы представлены в широком ассортименте - можно купить как единичное изделие, так и набор всего необходимого для сборки и подключения солнечной батареи

За разумную цену солнечные элементы можно найти на зарубежных торговых площадках, например, eBay или AliExpress . Там они представлены в широком ассортименте и по вполне доступным ценам. Для нашего проекта подойдут, например, распространённые поликристаллические пластины размером 3х6 дюймов. При идеальных условиях они могут генерировать электрический ток напряжением 0.5 В и силой до 3 А, то есть 1.5 Вт электрической мощности.

Если вы горите желанием максимально сэкономить или испробовать собственные силы, то нет никакой необходимости сразу же покупать хорошие, целые модули - можно обойтись и некондицией. Всё на том же eBay или AliExpress можно найти комплекты пластин с небольшими трещинками, сколами уголков и прочими дефектами - так называемые изделия класса «B». На технических характеристиках фотоэлементов внешние повреждения не сказываются, чего нельзя сказать о цене - бракованные детали можно купить в 2–3 раза дешевле тех, что имеют товарный вид. Поэтому-то их и рационально использовать, чтобы обкатать технологию на своей первой солнечной панели.

Выбирая фотоэлектронные модули, вы увидите элементы различного типа и размера. Не думайте, что чем больше площадь их поверхности, тем выше напряжение они производят. Это не так. Элементы одного типа генерируют одинаковое напряжение независимо от габаритов. Чего не скажешь о силе тока - здесь размер имеет решающее значение.

Хоть в качестве фотоэлементов и можно использовать морально устаревшую компонентную базу, вскрытые диоды и транзисторы имеют слишком низкое напряжение и силу тока - понадобятся тысячи таких устройств

Сразу же хочется предупредить о том, что нет смысла искать аналог среди различных подручных электронных устройств. Да, получить работающий фотоэлектронный модуль можно из мощных диодов или транзисторов, извлечённых из старого радиоприёмника или телевизора. И даже сделать батарею, соединив несколько таких элементов в цепочку. Однако запитать подобной «солнечной панелью» что-либо мощнее калькулятора или светодиодного фонаря не удастся ввиду слишком слабых технических характеристик единичного модуля.

Принцип расчёта мощности батареи

Для расчёта необходимой мощности самодельной электрической гелиосистемы необходимо знать месячное потребление электроэнергии. Определить это параметр легче всего - количество потребляемого электричества в киловатт-часах можно посмотреть по счётчику или узнать, заглянув в счета, которые регулярно присылает энергосбыт. Так, если затраты составляют, например, 200 кВт×ч, то солнечная батарея должна вырабатывать в день примерно 7 кВт×ч электроэнергии.

В расчётах следует учитывать, что солнечные панели генерируют электричество только в светлое время суток, причём их производительность зависит как от угла Солнца над горизонтом, так и погодных условий. В среднем до 70% всего количества энергии вырабатывается с 9 часов утра до 16 часов вечера и при наличии даже небольшой облачности или дымки мощность панелей падает в 2–3 раза. Если же небо затянут сплошные облака, то в лучшем случае вы сможете получить 5–7% от максимальных возможностей гелиосистемы.

По графику энергоэффективности солнечной батареи видно, что основная доля генерируемой энергии приходится на время от 9 до 16 часов

Учитывая всё вышесказанное, можно подсчитать, что для получения 7 кВт×ч энергии при идеальных условиях понадобится массив панелей мощностью не менее 1 кВт. Если же учитывать уменьшение производительности, связанное с изменением угла падения лучей, погодные факторы, а также потери в аккумуляторах и преобразователях энергии, то этот показатель необходимо увеличить как минимум на 50–70 процентов. Если брать в расчёт верхний показатель, то для рассматриваемого примера будет нужна солнечная панель мощностью 1.7 кВт.

Дальнейший расчёт зависит от того, какие фотоэлементы будут использоваться. Например, возьмём упоминаемые ранее поликристаллические элементы 3˝×6˝ (площадь 0,0046 кв. м) с напряжением 5 В и силой тока до 3 А. Чтобы набрать массив фотоэлементов с выходным напряжением 12 В и силой тока, равной 1 700 Вт/12 В = 141 А понадобится соединить 24 элемента в ряд (последовательное соединение позволяет суммировать напряжение) и использовать 141 А/ 3 А = 47 таких ряда (1 128 пластин). Площадь батареи при максимально плотной укладке составит 1 128 х 0.0046 = 5.2 кв. м

Для того чтобы накопить и трансформировать солнечную энергию в привычные 220 Вольт понадобится массив аккумуляторов, контроллер заряда и повышающий инвертор

Для накопления электричества используются аккумуляторы с напряжением 12 В, 24 В или 48 В, причём их ёмкости должно хватать для того, чтобы вместить те самые 7 кВт×ч энергии. Если брать распространённые 12-вольтовые свинцовые батареи (далеко не самый лучший вариант), то их ёмкость должна быть не менее 7 000 Вт×ч/12 В = 583 А×ч, то есть три больших аккумулятора по 200 ампер-часов каждый. Следует учитывать, что КПД аккумуляторных батарей составляет не более 80%, а также то, что при преобразовании напряжения инвертором в 220 В будет теряться от 15 до 20% энергии . Следовательно, придётся докупить как минимум ещё один такой же аккумулятор для компенсации всех потерь.

К вопросу о возможности использования электрических солнечных панелей в целях отопления

Как вы уже могли, наверное, заметить, словосочетание «солнечная батарея» или «солнечная панель» постоянно упоминается в контексте устройства электрической природы. Сделано это неслучайно, поскольку точно так же нередко называют и другие солнечные панели или батареи - геоколлекторы.

Несколько гелиоколлекторов смогут обеспечить дом горячей водой и возьмут на себя часть расходов по отоплению

Возможность прямого преобразования энергии солнечного излучения непосредственно в тепло позволяет значительно повысить производительность таких установок. Так, современные геоколлекторы с селективным покрытием вакуумных трубок имеют КПД 70–80% и вполне могут использоваться как в системах горячего водоснабжения, так и для обогрева помещений.

Конструкция солнечного коллектора с вакуумными трубками позволяет минимизировать теплопередачу во внешнюю среду

Возвращаясь к вопросу о том, можно ли использовать электрическую солнечную панель для питания отопительных приборов, давайте рассмотрим, сколько тепла понадобится, например, для дома в 70 кв. метров. Исходя из стандартных рекомендаций в 100 Вт тепла на 1 кв. м площади помещения, получим затраты 7кВт энергии в час или примерно 70 кВт×ч в сутки (обогревающие приборы ведь не будут включены постоянно).

То есть 10 самодельных батарей общей площадью 52 кв.м. Представляете себе махину шириной, скажем, 4 м и длиной более 13 м, а также блок из 12-вольтовых аккумуляторов суммарной ёмкостью 7200 ампер-часов? Такая система не сможет даже выйти на самоокупаемость до того, как будет выработан ресурс аккумуляторных батарей. Как видите, говорить о целесообразности применения солнечных батарей в целях отопления пока ещё слишком рано.

Выбор места для установки электрической гелиопанели

Выбирать место, где будет установлена солнечная панель, необходимо ещё на этапе проектирования. Это может быть либо обращённый на юг скат крыши, либо открытая площадка на загородном участке. Второе, конечно же, предпочтительнее в силу нескольких причин:

  • установленную внизу солнечную батарею легче обслуживать;
  • на земле проще смонтировать поворотное устройство;
  • исключается дополнительная нагрузка на кровлю и её повреждение при установке гелиосистемы.

Место установки электрической панели должно быть открыто для солнечных лучей в течение всего светового дня, поэтому рядом не должно быть деревьев или построек, тень от которых могла бы падать на её поверхность.

Выбирая место для установки гелиосистемы, обязательно учитывают возможность затенения солнечных батарей окружающими предметами

Второе обстоятельство, вынуждающее искать такую площадку до начала сборки солнечной батареи, связано с определением габаритов панели. Собирая устройство своими руками, мы можем достаточно гибко подходить к выбору его размеров. В итоге можно получить установку, которая идеально впишется в экстерьер.

Приступаем к изготовлению солнечной батареи своими руками

Сделав все необходимые расчёты и определившись с местом для установки солнечной батареи, можно приступать к её изготовлению.

Что понадобится в работе

Кроме купленных фотоэлементов, при постройке электрической гелиопанели понадобятся такие материалы:

  • медный многожильный провод;
  • припой;
  • специальные шины для соединения выводов фотоэлементов;
  • диоды Шоттки, рассчитанные на максимальный ток одной ячейки;
  • припой;
  • деревянные рейки или алюминиевые уголки;
  • фанера или OSB;
  • ДВП или другой жёсткий листовой диэлектрический материал;
  • оргстекло (можно использовать поликарбонат, антибликовые сверхпрозрачные стёкла или поглощающие ИК-лучи оконные стёкла толщиной не менее 4 мм);
  • силиконовый герметик;
  • саморезы;
  • антибактериальная пропитка для дерева;
  • масляная краска.

При выборе стекла для солнечной батареи следует выбирать поглощающие ИК-лучи сорта с максимальным светопропусканием и минимальным светоотражением

Для работы понадобится вот такой нехитрый инструмент:

  • паяльник;
  • ножовка или электролобзик;
  • набор отвёрток или шуруповёрт;
  • малярные кисти.

Если под солнечную панель будет сооружаться дополнительный кронштейн или поворотная опора, то, соответственно, список материалов и инструментов должен пополнить деревянный брус или металлические уголки, стальной пруток, сварочный аппарат и т. д. При установке СБ на земле площадку можно забетонировать или выложить плиткой.

Инструкция по ходу работ

В качестве примера рассмотрим процесс постройки электрической гелиосистемы из рассматриваемых выше солнечных элементов 3х6 дюйма с напряжением 0.5 В и силой тока до 3А. Для заряда 12-вольтового аккумулятора необходимо, чтобы наша батарея «выдавала» не менее 18 В, то есть понадобится 36 пластин. Сборку следует выполнять поэтапно, иначе не избежать ошибок в работе. Следует помнить, что любые переделки, равно как и излишние манипуляции с фотоэлементами могут привести к их повреждению - эти устройства отличаются повышенной хрупкостью.

Для изготовления полноценной солнечной батареи понадобится несколько десятков фотоэлементов

Изготовление корпуса

Корпус солнечной батареи представляет собой плоский ящик, закрытый с одной стороной фанерой, а с другой - прозрачным стеклом. Для изготовления каркаса можно использовать как алюминиевые уголки, так и деревянные рейки. Второй вариант проще в работе, поэтому для изготовления своей первой панели рекомендуем выбрать его.

Приступая к сооружению солнечной панели, сделайте небольшой чертёж - в дальнейшем это поможет сэкономить время и избежать ошибок с размерами

Из реек сечением 20х20 мм собирают прямоугольный каркас с внешними размерами 118х58 см, усиленный одной поперечиной.

Корпус солнечной батареи представляет собой деревянный щит с бортиками высотой не более 2 см - в таком случае они не будут затенять фотоэлементы

В нижних торцах корпуса, а также в распорной планке сверлят вентиляционные устройства. Они будут сообщать внутреннюю полость с атмосферой, благодаря чему стекло не будет запотевать с внутренней стороны. После этого из листа оргстекла вырезают прямоугольник, соответствующую внешним габаритам рамы.

Проделанные в рейках отверстия служат для вентиляции внутреннего пространства панели

Обратную сторону короба зашивают фанерой либо OSB. Корпус обрабатывают антисептиком и окрашивают масляной краской.

Чтобы защитить деревянный корпус от атмосферных воздействий, его окрашивают масляной краской

По размеру внутренних полостей корпуса вырезают 2 подложки для фотоэлементов. Их использование во время монтажа пластин не только сделает работу удобнее, но и снизит риск повреждения хрупкого стекла. Для подложек можно взять любой плотный материал - ДВП, текстолит и т. д. Главное, чтобы он не проводил электрический ток и хорошо противостоял нагреву.

В качестве подложек для фотоэлементов можно использовать любой подходящий диэлектрик, например, перфорированную ДВП

Сборка пластин

Сборку пластин начинают с распаковки. Нередко для сохранности фотоэлементов их собирают в стопку и заливают парафином. В этом случае изделия погружают в ёмкость с водой и подогревают на водяной бане. После того как парафин будет растоплен, пластины следует отделить друг от друга и хорошо просушить.

Удаление воска с пакета пластин лучше всего проводить на водяной бане. Способ, который показан на рисунке,зарекомендовал себя не лучшим образом - при кипении пластины начинают вибрировать и ударяться друг о друга

Фотоэлементы раскладывают на подложке таким образом, чтобы их выводы были направлены в нужную сторону. В нашем случае все 36 пластин соединяются последовательно - это позволит «набрать» нужные нам 18 В. Для простоты монтажа следует паять по 6 пластин, получая 6 отдельных цепочек.

Перед пайкой фотоэлементы раскладывают в цепочки нужной длины

Зная принцип формирования солнечных панелей, вы сможете легко подобрать требуемое напряжение и силу тока. Всё очень просто: сначала собирается группа последовательно соединённых пластин, которая даст нужное напряжение. После этого отдельные блоки соединяют параллельно - при этом будет суммироваться их сила тока. Таким образом, можно получить панель любой мощности.

На токопроводящие дорожки фотоэлементов наносится припой и при помощи маломощного паяльника детали соединяются друг с другом.

Покупая более дешёвые фотоэлементы без выводов, будьте готовы к кропотливой работе по пайке проводников

Собрав все шесть групп, в центр каждой пластины необходимо нанести каплю силиконового герметика. Затем цепочки фотоэлементов разворачивают и аккуратно приклеивают к подложке.

Для фиксации фотоэлементов на подложкке используют силиконовый герметик или резиновый клей

К плюсовому выводу каждой цепочки припаивают диод Шоттки - он защитит аккумулятор от разряда через панель в тёмное время суток или при сильной облачности. Используя специальную шину или медную оплётку, отдельные блоки соединяют в единую цепь.

На схеме электрических подключений элементы солнечной панели обведены пунктирной линией

При последовательном соединении плюсовой вывод должен присоединяться к минусовому контакту, а при параллельном - к одноимённому.

Установка пластин в корпус

Собранные на подложке фотоэлементы укладывают в корпус и фиксируют к фанере при помощи саморезов. Отдельные части солнечной батареи соединяют друг с другом медным проводником. Его можно пропустить через одно из вентиляционных отверстий в поперечине - так не будет создаваться помех при установке стекло.

К «плюсу» и «минусу» припаивают многожильный кабель, который выводят наружу через отверстие в нижней части корпуса - он понадобится для подключения панели к аккумулятору. Для предотвращения повреждения пластин, кабель прочно фиксируют к деревянной раме.

После установки пластин все навесные элементы фиксируют при помощи термоклея или герметика

Сверху солнечную батарею накрывают листом оргстекла, который крепят при помощи уголков или саморезов. Чтобы защитить фотоэлементы от влаги, между рамой и стеклом наносят слой силиконового герметика. На этом сборку можно считать законченной - можно выносить солнечную батарею на крышу и подключать к потребителям.

После укладки и фиксации стеклянного покрытия солнечная панель готова к работе

Эффективность работы солнечной батареи зависит от её ориентации на солнце - максимальная мощность достигается при падении солнечных лучей под прямым углом. Чтобы повысить производительность установки, её размещают на поворотном каркасе. Эта конструкция представляет собой деревянную или металлическую раму, установленную на поворотной горизонтальной оси.

Для максимальной эффективности солнечная панель должна быть сориентирована строго на Солнце. Лучше всего с этой задачей справляются автоматические установки, называемые гелиотрекерами

Для поворота и фиксации рамы можно использовать как механический привод (например, цепную передачу), так и подпорную планку со ступенчатой регулировкой. Наиболее совершенные поворотные устройства оснащают узлом вращения в вертикальной плоскости и системой автоматического слежения за Солнцем. Подобную аппаратуру можно собрать, используя шаговые двигатели и современный микроконтроллер, например, Arduino.

Постройка гелиотрекера в домашних условиях - чрезвычайно сложная задача, поэтому чаще всего умельцы обходятся простым каркасом с наклонной или зафиксированной рамой

Подключение солнечной батареи к системе автономного электроснабжения следует выполнять посредством контроллера заряда. Это устройство не только правильно распределит потоки электрической энергии, но и предотвратит глубокий разряд АКБ, увеличивая срок её эксплуатации. Все подключения, включая присоединение 220-вольтового инвертора, следует выполнять медными проводами сечением не менее 3–4 кв. мм - это позволит избежать оммических потерь энергии.

Контроллер заряда солнечной батареи позволит ей работать с максимальной токоотдачей и предохранит аккумуляторы от чрезмерного разряда

Напоследок хотелось бы порекомендовать следить за солнечной батареей не только по индикаторам и стрелкам приборов. Помните о том, что загрязнённое стекло может снизить производительность установки на 50% и более. Не забывайте проводить регулярную уборку, и собранная своими руками установка отплатит вам киловаттами совершенно бесплатной, а главное, экологически чистой энергии.

Видео: сборка солнечной панели своими руками

Сегодня нет никаких преград для сборки солнечной панели своими руками. Нет проблем ни с приобретением фотоэлементов, ни с покупкой контроллера или преобразователя энергии. Надеемся, что эта статья станет для вас отправной точкой на пути к автономному дому, и вы наконец-то возьмётесь за дело. Будем ждать от вас вопросов, идей и предложений относительно конструирования и улучшения солнечных батарей. До новых встреч!

Все началось с прогулки по сайту eBay -увидел солнечные панели и заболел.

Споры с друзьями об окупаемости были смешны…. Покупая автомобиль никто, не думает об окупаемости. Авто как любовница, готовь сумму на удовольствие заранее. А тут совсем наоборот, затратил деньги так они еще и пытаются окупиться… Кроме того, подключил к солнечным панелям инкубатор так они еще как оправдывают свое предназначение, предохраняя ваше будущее хозяйство от гибели. В общем, имея инкубатор, ты зависишь от многих факторов, тут либо пан, либо профан. Когда будет время, напишу о самодельном инкубаторе. Ну ладно чего рассуждать, каждый в праве выбирать…..!

После долгих ожиданий, заветная коробочка с тонкими хрупкими пластинками, наконец, греет руки и сердце.

Первым делом конечно Интернет … ну, не боги горшки обжигают. Опыт чужой всегда полезен. И тут наступило разочарование….. Как оказалось, своими руками панели сделали человек пять, остальные просто перекопировали на свои сайты, причем некоторые, дабы быть оригинальней скопированы с разных разработок. Ну да бог с ними пусть это остается на совести хозяев страничек.

Решил почитать форумы, долгие рассуждения теоретиков «как доить корову» привели в полное уныние. Рассуждения о том, как ломаются пластины от нагрева, трудности герметизации и т д. Почитал и плюнул на все это дело. Мы пойдем своим путем, методом проб и ошибок, опираясь на опыт «коллег», чего изобретать велосипед?

Ставим задачу:

1) Панель должна быть изготовлена из подручных материалов, дабы не тянуть кошелек, ибо неизвестен результат.

2) Процесс изготовления должен быть нетрудоемким.

Начинаем изготовление солнечной панели:

Первым делом были приобретены 2 стекла 86х66 см. для будущих двух панелей.

Стекло простое, приобретал у производителей пластиковых окон. А может и не простое…

Долгий поиск алюминиевых уголков, по опыту уже проверенному «коллегами» закончился ничем.

Потому процесс изготовления начинался вяло, с чувством долгостроя.

Процесс пайки панелей описывать не стану, так как в сети много информации про это и даже видео есть. Просто оставлю свои заметки и замечания.

Не так страшен черт, как его малюют.

Не смотря на трудности, которые описывают на форумах, пластины элементов паяются легко, как лицевая сторона, так и тыльная. Так же, вполне пригоден наш советский припой ПОС- 40, во всяком случае, никаких трудностей я не испытал. Ну и конечно, наша родная канифоль, куда без нее… За время пайки не сломал ни одного элемента, думаю надо быть полным идиотом, чтобы сломать их на ровном стекле.

Проводники, которые идут в комплекте к панелям, очень удобны, во-первых, они плоские, во-вторых, они луженные, что значительно сокращает время пайки. Хотя вполне можно использовать обычный провод, провел эксперимент на запасных пластинах, трудностей в пайке не испытал. (на фото остатки плоского провода)

На пайку 36 пластин у меня ушло около 2 часов. Хотя на форуме читал, что люди паяют по 2 дня.

Паяльник желательно использовать на 40 Вт. Так как пластины легко отводят тепло, а это затрудняет пайку. Первые попытки паять 25 Ватным паяльником были нудными и печальными.

Так же при пайке желательно оптимально подбирать количество флюса (канифоли). Ибо большой избыток ее не дает прилипнуть олову к пластине. А потому приходилось практически залуживать пластинку, в общем, ничего страшного, все поправимо. (приглядитесь на фото видно.)

Расход олова довольно большой.

Ну вот, на фото пропаянные элементы, во втором ряду косяк, не пропаян один вывод, но ничего главное заметил и исправил.

Окантовка стекла сделана двухсторонним скотчем далее на этот скотч будет приклеена полиэтиленовая пленка.

Скотчи, которые использовал.

После припайки, начало герметизации (скотч вам в помощь).

Ну вот, проклеенные пластины скотчем и исправленным косяком.

Далее с окантовки панели снимаем защитный слой двухстороннего скотча и приклеиваем на нее полиэтиленовую пленку с запасом на края. (сфоткать забыл) Ах да, в скотче проделываем прорези для отходящих проводов. Ну не глупые, поймете, что и когда… По краю стекла, а так же выводы проводов, углы, промазываем силиконовым герметикам.

И загибаем пленку на внешнюю сторону.

Предварительно было изготовлена рамка из пластика. Когда в доме устанавливал пластиковые окна, на окно шурупами крепят пластиковый профиль для подоконника. Посчитал, что эта часть слишком тонкая. А потому удалил и сделал подоконник по своему. Потому, от 12 окон остались пластиковые профили. Так сказать материал в избытке.

Рамку клеил обычным, старым, советским утюгом. Жаль, процесс не снимал, но думаю, ничего тут сверх непонятного нет. Отрезал под 45 градусов 2 стороны, нагрел на подошве утюга и приклеил предварительно установив на ровный угол. На фото рамка под вторую панель.

Устанавливаем стекло с элементами и защитной пленкой в рамку

Лишнюю пленку обрезаем, а края проклеиваем силиконовым герметикам.

Получаем вот такую панель.


Да, забыл написать, что кроме пленки к рамке приклеил направляющие, которые не дают упасть элементам, если скотч отклеиться. Пространство между элементами и направляющими залито монтажной пеной. Что позволило прижать плотнее элементы к стеклу.

Ну, начнем испытания.

Так как панель одну я изготовил заранее, результат одной мне известен Напряжение 21Вольт. Ток короткого замыкания 3,4 Ампера. Сила тока заряда аккумуляторной батареи 40А. ч 2,1 Ампера.

К сожалению не фоткал. Надо сказать, что сила тока круто зависит от освещенности.

Теперь соединенные параллельно 2 батареи.

Погода на момент изготовления была облачная, было около 4 часов дня.

Вначале меня это расстроило, а потом даже обрадовало. Ведь это самые усредненные условия для батареи, а значит результат правдоподобнее, чем при ярком солнце. Солнышко просвечивало через облака не так ярко. Надо сказать, что и светило солнышко немного сбоку.

При таком освещении ток короткого замыкания составил 7.12 Ампер. Что считаю превосходным результатом.

Напряжение без нагрузки 20,6 Вольт. Ну, это стабильно около 21 вольта.

Ток заряда АКБ 2,78Ампера. Что при таком освещении гарантирует заряд АКБ.

Замеры показали, при хорошем солнечном деньке результат будет лучше.

К тому времени погода ухудшалась, тучи закрыли, солнышко полностью и мне стало интересно, а что покажет при таком раскладе. Это же практически вечерние сумерки…

Небо выглядело так, специально снял линию горизонта. Да впрочем, на самом стекле батареи видно небо как в зеркало.

Напряжение при таком раскладе 20,2 вольта. Как уже говорилось 21в. это практически константа.

Ток короткого замыкания 2,48А. В общем, то, для такого освещения замечательно! Практически равен одной батареи при хорошем солнышке.

Ток заряда АКБ 1,85 Ампера. Ну что сказать… Даже в сумерки АКБ будет заряжаться.

Вывод построена солнечная батарея, не уступающая по характеристикам промышленным образцам. Ну а долговечность….., будем смотреть, время покажет.

Ах да, заряд батареи ведется через диоды Шоттки на 40 А. ну, что нашлось.

Так же хочу сказать про контроллеры. Все это красиво выглядит, но не стоит затраченных на контроллер денег.

Если вы дружите с паяльником, схемы очень просты. Делайте и получайте удовольствие от изготовления.

Ну вот, налетел ветер и оставшиеся запасные 5 элементов сорвались в неуправляемый полет….. результат осколки. Ну что поделать, безалаберность должна быть наказана. А с другой стороны…. Куда их?

Решили сделать из осколочков еще одну панельку, вольт на 5. На изготовление ушло 2 часа. Остатки материалов как раз пришлись в пору. Вот что получилось.

Замеры сделаны вечером.

Надо сказать, что при хорошем освещении сила тока короткого замыкания более 1 ампера.

Кусочки спаяны параллельно и последовательно. Цель, обеспечить примерно одинаковую площадь. Ведь сила тока равна самому маленькому элементу. А потому при изготовлении подбирайте элементы по площади освещения.

Настало время рассказать о практическом применении изготовленых мною солнечных батарей.

Весной установил две изготовленые панели на крыше, высота 8 метров под углом 35 градусов, оринтированые на юговосток. Такое орентирование было выбрано не случайно, потому как было замечено, что в данной широте, летом солнышко всходит в 4 утра и к 6-7 часам вполне сносно заряжает аккумуляторы током в 5-6 ампер, тоже касается и вечера. Каждая панель должна обязательно иметь свой диод. Дабы исключить выгорание элементов при отличающийся мощности панелей. И как следствие неоправданое снижение мощности панелей.
Спуск с высоты был выполнен многожильным проводом сечением 6мм2 каждая жила. Таким образом удалось достигнуть минимальных потерь в проводах.

В качестве накопителей энергии использованы старые еле-живые аккумуляторы 150А.ч,75А.ч,55А.ч, 60А.ч. Все аккумуляторы соеденены паралельно и учитывая потерю емкости, сумарно составляют ококло 100А.ч.
Контроллер заряда аккумулятора отсутствует. Хотя думаю установка контроллера необходима.Над схемой контроллера сечас работаю. Так как в течении дня аккумуляторы начинают кипеть. Потому приходится ежедневно сбрасывать излишки энергии, путем включения ненужной нагрузки. В моем случаее включаю освещение бани. 100 Вт. Так же в течении дня работает LCD телевизор примерно 105Вт, вентилятор 40Вт., а к вечеру добавляется энергосберегающая лампочка 20Вт.

Любителям проводить расчеты скажу: ТЕОРИЯ И ПРАКТИКА не одно и тоже. Так как такой "сендвичь" вполне прекрасно работает свыше 12 часов. при этом иногда заряжаем от него телефоны.Полного разряда аккумуляторов еще не достиг ни разу. Что соответственно перечеркивает расчеты.

В качестве преобразователя использован чуть- чуть переделаный для свободного пуска от аккумуляторов компьютерный бесперебойник (инвертор) 600В.А, что примерно соответствует нагрузке в 300Вт.
Так же хочу отметить, что батареи заряжаются и при яркой луне. При этом ток составляет 0,5-1 Ампер, думаю для ночи это совсем неплохо.

Конечно хотелось бы увеличить нагрузку, но для этого требуется мощьный инвертор. Планирую изготовить инвернтор сам по ниже приведенной схеме. Так как покупать инвертор за бешаные деньги НЕРАЗУМНО!

Одним из способов сократить оплату коммунальных услуг является использование солнечных батарей. Такую батарею можно сделать и установить своими руками.

Солнечная батарея - это устройство, принцип работы которого основан на способности фотоэлементов преобразовывать энергию солнца в электричество. Эти преобразователи соединены между собой в общую систему. Получаемый электрический ток накапливается в специальных устройствах - аккумуляторах.

Чем больше площадь панелей, тем больше электрической энергии можно получить

Мощность солнечной батареи зависит от размера поля из фотоэлементов. Но это не означает, что только большие площади способны воспроизвести требуемое количество электроэнергии. Например, всем знакомые калькуляторы могут использовать портативные солнечные батареи, которые вмонтированы в их корпус.

Преимущества и недостатки

К преимуществам солнечной батареи относятся:

  • простота монтажа и обслуживания;
  • отсутствие вреда для окружающей среды;
  • небольшая масса панелей;
  • бесшумная работа;
  • независящие от распределительной сети поставки электрической энергии;
  • неподвижность элементов конструкции;
  • небольшие денежные затраты на изготовление;
  • долгий срок эксплуатации.

В число недостатков солнечной батареи входят:

  • трудоёмкость процесса изготовления;
  • бесполезность в тёмное время суток;
  • потребность в большой площади для установки;
  • восприимчивость к загрязнениям.

Хотя изготовление солнечной батареи является трудоёмким процессом, её можно собрать своими руками.

Инструменты и материалы

Если нет возможности приобрести готовую солнечную батарею для дома, её можно сделать самостоятельно.

Для изготовления солнечной батареи понадобятся:

  • фотоэлементы (для создания гелиопанели);
  • набор специальных проводников (для соединения фотоэлементов);
  • алюминиевые уголки (для корпуса);
  • диоды Шотке;
  • крепёжные метизы;
  • винты для крепежа;
  • лист поликарбоната (прозрачный);
  • силиконовый герметик;
  • паяльник.

Выбор фотоэлементов

Сегодня производители предлагают потребителям выбор из двух типов устройств. Фотоэлементы из монокристаллического кремния имеют КПД до 13%. Они отличаются низкой эффективностью при пасмурной погоде. Фотоэлементы из поликристаллического кремния имеют КПД до 9%, однако они способны работать не только в солнечные, но и в облачные дни.

Чтобы обеспечить дачу или небольшой частный дом электроэнергией, достаточно воспользоваться поликристаллами.

Важная информация: Желательно приобретать фотоэлементы у одного производителя, так как ячейки разных марок могут иметь существенные различия, что сказывается на эффективности работы и процессе сборки, а также приводит к более высоким затратам энергии при эксплуатации.

При выборе фотоэлементов необходимо обратить внимание на следующее:

  • чем больше ячейка, тем большее количество энергии она производит;
  • элементы одного типа создают одинаковое напряжение (от размера данный показатель не зависит).

Чтобы определить мощность солнечной батареи, достаточно генерируемый ток умножить на напряжение.

Отличить поликристаллические фотоэлементы от монокристаллических достаточно просто. Первый тип выделяется ярко-синим цветом и квадратной формой. Монокристаллические фотоэлементы темнее, они срезаны по краям.


Поли- и монокристаллические панели легко отличить даже на первый взгляд

Не стоит отдавать предпочтение продукции со сниженной ценой, поскольку она может отказаться отбраковкой - это детали, которые не прошли тест на заводе. Лучше воспользоваться услугами проверенных поставщиков, которые хоть и предлагают товар по высокой цене, зато отвечают за его качество. Если нет опыта в сборе фотоэлементов, рекомендуется приобрести несколько тестовых образцов, чтобы потренироваться, а только потом купить продукцию для изготовления самой батареи.

Некоторые производители запаивают фотоэлементы в воск, чтобы предотвратить порчу во время перевозки. Однако избавиться от него довольно сложно из-за высокого риска повреждения пластин, поэтому рекомендуется покупать фотоэлементы без воска.

Инструкция по изготовлению

Процесс изготовления солнечной батареи состоит из нескольких этапов:

  1. Подготовка фотоэлементов и пайка проводников.
  2. Создание корпуса.
  3. Сборка элементов и герметизация.

Подготовка фотоэлементов и пайка проводников

На столе собирается набор фотоячеек. Допустим, производитель указывает на мощность 4 Вт и напряжение 0,5 вольт. В таком случае нужно использовать 36 фотоэлементов, чтобы создать солнечную батарею на 18 Вт.

С помощью паяльника, мощность которого составляет 25 Вт, наносятся контуры, образуя припаянные проводки из олова.


Качество пайки является главным требованием для эффективной работы солнечной батареи

Важная информация: Желательно выполнять процесс пайки на ровной твёрдой поверхности.

Затем все ячейки соединяются между собой в соответствии с электрической схемой. При подключении солнечной панели можно воспользоваться одним из двух способов: параллельным или последовательным соединением. В первом случае плюсовые клеммы соединяются с плюсовыми, минусовые с минусовыми. Затем клеммы с разным зарядом выводятся к аккумулятору. Последовательное подключение предусматривает соединение противоположных зарядов путём поочерёдного скрепления ячеек между собой. После этого оставшиеся концы выводятся к аккумуляторной батарее.

Важная информация: Независимо от того, какой вид подключения вы выбрали, необходимо предусмотреть шунтирующие диоды, которые устанавливаются на клемме «плюс». Идеально подходят диоды Шорке. Они препятствуют разрядке устройства ночью.

Когда спайка будет завершена, нужно вынести ячейки на солнце, чтобы проверить их работоспособность. Если функциональность в норме, можно начинать сборку корпуса.


Проверка устройства выполняется на солнечной стороне

Как собрать корпус

  • Подготовить уголки из алюминия с невысокими бортиками.
  • Для метизов предварительно выполняются отверстия.
  • Затем на внутреннюю часть алюминиевого уголка наносится силиконовый герметик (желательно сделать два слоя). От того, насколько качественно он будет нанесён, зависит герметичность, а также длительность службы солнечной батареи. Важно обратить внимание на отсутствие незаполненных мест.
  • После этого в раму помещается прозрачный лист поликарбоната и плотно фиксируется.
  • Когда герметик высохнет, крепятся метизы с шурупами, что обеспечит более надёжное крепление.

Учитывая хрупкость конструкции, рекомендуется сначала создать каркас, а затем только устанавливать фотоэлементы

Важная информация: Кроме поликарбоната можно использовать оргстекло или антибликовое стекло.

Сборка элементов и герметизация

  • Очистите прозрачный материал от загрязнений.
  • Разместите фотоэлементы на внутренней стороне листа из поликарбоната на расстоянии 5 мм между ячейками. Чтобы не ошибиться, предварительно сделайте разметку.
  • На каждый фотоэлемент нанесите монтажный силикон.

Чтобы продлить срок службы солнечной батареи, рекомендуется нанести на её элементы монтажный силикон и закрыть задней панелью
  • После этого прикрепляется задняя панель. После застывания силикона нужно герметизировать всю конструкцию.

Герметизация конструкции обеспечит плотное прилегание панелей друг к другу

Видео: Изготовление солнечной батареи своими руками в домашних условиях

Правила установки

Чтобы получить возможность использовать солнечную батарею по максимуму, рекомендуется при установке устройства придерживаться определённых правил:

  1. Необходимо правильно выбрать место. Если разместить солнечную батарею там, где постоянно присутствует тень, устройство будет малоэффективно. Исходя из этого, не рекомендуется устанавливать прибор около деревьев, желательно выбирать открытое место. Многие монтируют солнечную батарею на крыше дома.
  2. При установке необходимо направлять устройство в сторону солнца. Нужно добиться максимального попадания его лучей на фотоэлементы. К примеру, находясь на севере, следует ориентировать лицевую сторону солнечной батареи на юг.
  3. Большую роль играет определение уклона устройства. Он также зависит от географического положения. Считается, что угол уклона должен составлять широту, в которой устанавливается батарея. При размещении в зоне экватора придётся производить настройку угла наклона по времени года. Коррекция составит 12 градусов, учитывая увеличение и уменьшение летом и зимой соответственно.
  4. Рекомендуется установить солнечную батарею в доступном месте. По мере использования устройства его лицевая сторона накапливает грязь, а в зимнее время её заносит снегом, и в результате выработка энергии снижается. Поэтому необходимо периодически проводить чистку батареи, удаляя налёт с её лицевой панели.

Изготовление устройства из подручных средств

На сегодняшний день умельцами были разработаны способы создания солнечных батарей из подручных материалов, но оправдана ли такая экономия?

Использование старых транзисторов

Для изготовления солнечной батареи можно использовать старые транзисторы. Для этого срезают их крышки, зафиксировав приборы в тисках за ободок. Затем выполняется измерение напряжения под воздействием света. Необходимо определить его на всех выводах прибора с целью обнаружения максимальных значений. Напряжение зависит от мощности транзистора, а также от габаритов кристалла.


Срезать крышку транзистора нужно аккуратно, иначе можно повредить тонкие провода, которые подведены к полупроводниковому кристаллу

После этого можно приступить к изготовлению солнечной батареи. Используя пять транзисторов и, соединив их последовательно, можно получить устройство достаточной для обеспечения работы калькулятора мощности. Каркас собирается из листового пластика. Необходимо просверлить в нём отверстия, нужные для вывода транзистора. Калькулятор на основе такой солнечной батареи работает стабильно, однако нужно, чтобы он находился не дальше 30 см от источника света. Для лучших результатов целесообразно использовать вторую цепочку транзисторов.

Применение диодов

Для сбора солнечной батареи понадобится много диодов. Кроме того, используется плата для подложки. В процессе изготовления применяется паяльник.

Сначала нужно открыть внутренний кристалл, чтобы на него попадали лучи солнца. Для этого верхушка диода срезается и снимается. Нижнюю часть, где находится кристалл, необходимо подогреть над газовой плитой около 20 секунд. Когда расплавится припой кристалла, он легко снимется пинцетом. Аналогичная манипуляция проводится с каждым диодом. Затем кристаллы припаиваются к плате.


Элементы солнечной батареи из диодов соединяются между собой с помощью тонких медных проводов

Для получения 2–4 В достаточно 5 блоков, состоящих из пяти кристаллов, спаянных последовательно. Блоки размещаются между собой параллельно.

Устройство из листов меди

Чтобы изготовить солнечную батарею из листов меди, потребуется:

  • сами медные листы;
  • два зажима «крокодил»;
  • микроамперметр высокой чувствительности;
  • электрическая плита (не менее 1000 Вт);
  • пластиковая бутылка с обрезанным верхом;
  • две ложки поваренной соли;
  • вода;
  • наждачная бумага;
  • ножницы по листовому металлу.

Порядок действий:

  1. Сначала отрежьте кусок меди, который по размерам соответствует тэну на плите. Поверхность листа очистите от жира и зачистите наждачной бумагой, затем поместите на плиту и нагревайте при максимальной температуре.
  2. Во время образования окиси можно увидеть разноцветные узоры. Необходимо дождаться чёрного цвета, а затем оставить медный лист нагреваться ещё около получаса. По истечении этого промежутка времени плита выключается. Лист остаётся на ней для медленного охлаждения.
  3. Когда чёрная окись отпадёт, необходимо промыть медь под проточной водой.
  4. Затем вырежьте кусок аналогичного размера из целого листа. Обе части разместите в пластиковой бутылке. Важно, чтобы они не соприкасались друг с другом.
  5. Медные пластины прикрепите к стенкам бутылки с помощью зажимов. Провод от чистого листа подключите к положительному выводу измерительного прибора, а от меди с оксидом - к отрицательному.
  6. Соль растворите в небольшом количестве воды. Солёную воду осторожно вливайте в бутылку, стараясь не намочить контакты. Раствора должно быть столько, чтобы он не покрывал пластины полностью. Солнечная батарея готова, можно проводить эксперименты.

При размещении медных пластин в ёмкости нужно аккуратно изогнуть их, чтобы они вместились, но не сломались

Есть ли выгода?

КПД устройства, изготовленного из транзисторов, очень низок. Причина этого состоит в большой площади самого прибора и небольшом размере солнечного элемента (полупроводника). Таким образом, солнечная батарея на основе транзисторов не получила распространения, подобные устройства подходят только для развлечений.

Диодам свойственно потреблять ток и самопроизвольно светиться. Поэтому при их использовании для изготовления солнечной батареи часть диодов будет генерировать электричество, а остальные приборы, наоборот, его потреблять. Из этого можно сделать вывод, что эффективность такого устройства низкая.

Чтобы зажечь лампочку от солнечной батареи на основе медных листов, потребуется использовать большое количество материала. К примеру, для работы плиты на 1000 Вт необходимо 1 600 000 м² меди. Для обустройства такого прибора на крыше дома потребуется, чтобы её площадь составляла 282 м². И все усилия пошли бы на обеспечение работы одной печи. На практике использовать такую солнечную батарею нет смысла.

Несмотря на относительную дороговизну, солнечные батареи довольно быстро окупаются. Попробуйте этот экологичный способ выработки энергии, собрав солнечную батарею своими руками.

В получении электроэнергии альтернативными методами в последнее время прослеживается тенденция к активному развитию. И это несмотря на то что подобный подход пока еще остается весьма затратным, если планируется приобрести готовое оборудование. Ждать быстрой окупаемости сделанных вложений не приходится.

Тем не менее, многие рачительные хозяева домов и даже квартир все пристальнее рассматривают такие возможности. А некоторые из них идут по пути самостоятельного создания необходимого оборудования, хотя бы в качестве стартового эксперимента. Так, например, солнечная батарея своими руками вполне может быть создана в домашних условиях, так как сегодня для ее сборки можно приобрести все необходимое. Тем более что существует несколько способов сборки солнечных панелей из разных комплектующих.

Тем, кто хочет попробовать самостоятельно собрать такой источник электроэнергии, и переназначена настоящая публикация.

Общие понятия о принципе получения электричества от солнечной энергии

У людей, решивших собрать солнечную батарею, возникает немало вопросов, а для многих эта задача видится и вовсе не выполнимой из-за кажущейся сложности ее конструкции. Однако, на самом деле особых трудностей в ее сборке нет. И в этом можно убедиться, изучив схему и рассмотрев, как выполняет работу мастер, изготовивший не один подобный прибор.

Солнечная батарея представляет собой совокупность фотоэлектрических преобразователей солнечной энергии в электрическую.

Отдельные фотоэлементы соединены в единую панель и защищены с двух сторон материалами, стойкими к ультрафиолету, влаге и другим атмосферным явлениям. Это важно, так как батареи чаще всего эксплуатируются на открытом незащищенном пространстве - это может быть крыша здания, балконное ограждение или же поляна около дома.

Общая конструкция системы получения электрической энергии от солнечной представляет собой целый ряд приборов и устройств, соединенных в единую цепь:

  • Пластины-преобразователи - это полупроводниковые фотоэлементы, обладающие способностью генерировать постоянный ток под воздействием света. Пластины соединяются между собой по определенной схеме специальными шинами (плоскими проводниками), и собираются в батарею в общем корпусе.
  • Панели-батареи, собранные из фотоэлементов, подключаются к прибору-контролеру с подобранными параметрами тока и напряжения, необходимыми для зарядки аккумулятора.
  • Аккумулятор или целая батарея таких аккумуляторов накапливает заряд.
  • Специальный инвертор преобразует постоянный ток в переменный с напряжением в 220 В (если этот необходимо).

Такая череда приборов используются в схеме в том случае, когда планируется отдельные постоянные точки потребления или даже полностью весь дом запитать от солнечной энергии. Накопленная в аккумуляторе за день энергия может быть использована в пасмурные дни или в темное время суток. Применяются и более простые схемы, когда солнечные батареи выступают лишь вспомогательным источником питания, и накопление энергии не требуется. Панель в таком случае может быть непосредственно подключена к прибору-потребителю. Однако, этот вариант менее надежен, так как стабильность питания будет полностью зависеть от наличия солнца в данный момент.

Использование солнечных батарей для полного снабжения дома энергией актуально в регионах, где количество солнечных дней в течение года преобладает. Этим обычно «славятся» южные регионы страны. В других условиях они чаще всего применяются в качестве дополнительных источников электроснабжения.

Модули солнечных батарей, из которых собирается панель, подразделяются на три типа:

монокристаллический;

— поликристаллический;

— аморфный (тонкопленочный).

От особенностей структурного строения пластин напрямую зависит эффективность конструкции, а также ее общая стоимость.

Монокристаллический и поликристаллический вариант солнечной батареи

Монокристаллические пластины изготавливаются из монокристаллов кремния, выращенных по методу Чохральского. Они отличаются высоким качеством и обладают неплохим (по меркам фотоэлементов) КПД, равным примерно 20÷22%. Из-за этого и стоимость их достаточно высока.

Солнечные лучи, попадая на монокристаллическую поверхность, способствуют возникновению направленного движения свободных электронов. Пластины с двух сторон подсоединены к шинам, которые затем подключаются к общей электрической цепи системы.

Высокий КПД этого типа пластин объясняется тем, что солнечные лучи равномерно рассеиваются по поверхности кристалла.

Поликристаллические фотоэлементы изготавливаются из полупроводника, имеющего поликристаллическую структуру. Именно этот тип батареи считается оптимальным для создания системы преобразования солнечной энергии. Стоимость элементов, а как следствие - и целых батарей получается ниже по сравнению с монокристаллическими приборами. Это обуславливается особенностями производства фотоэлементов, так как при их изготовлении применяются фрагменты, оставшиеся от монокристаллов.

Если сравнивать два этих типа изделий, то можно выделить следующие различия, выявленные тестированием независимых компаний:

  • Поликристаллические пластины отличаются по внешнему виду от монокристаллов, так как имеют неоднородный по цвету окрас поверхностей, с перемежением темных и светлых участков.

  • В процессе эксплуатации у всех фотоэлементов происходит постепенное снижение мощности. Так, после года работы у монокристаллов она снижается на 3%, а у поликристаллических элементов - на 2%.
  • Суммарное количество электроэнергии, выработанное монокристаллическим модулем, примерно на 30% выше, чем у поликристаллических элементов, при их одинаковой площади.
  • Стоимость поликристаллов на 10÷15 % ниже монокристаллических батарей.

Аморфные солнечные модули

Этот тип элементов представляет собой плотную гибкую пленку, значительно упрощающую процесс монтажа батарей.

На современном рынке представлены три поколения подобных фотоэлементов:

  • Элементы первого поколения являются однопереходными. Они имеют низкий КПД - всего 5% и относительно небольшой срок эксплуатации - не более 10 лет.
  • Пленка второго поколения тоже однопереходного типа, но уровень КПД у нее повышен до 8%, увеличен и срок эксплуатации.
  • Тонкопленочные батареи третьего поколения обладают КПД до 12%, и обладают длительным сроком службы, составляя конкуренцию кристаллическим вариантам.

Несмотря на не выдающиеся характеристики, самыми популярными остаются однопереходные тонкопленочные модули второго поколения. Они доступны по цене и обладают приличной мощностью, которая вполне может конкурировать с кристаллическими вариантами батарей.

Сравнение солнечных фотоэлементов

Если сравнивать кристаллические и пленочные батареи, то у последних существует ряд существенных преимуществ, благодаря которым часто предпочтение отдается именно им:

  • Аморфные пленочные элементы лучше реагируют на изменение температуры, в частности, на ее повышение. В солнечные месяцы года этот тип батарей способен произвести большее количество энергии по сравнению с кристаллическими аналогами - те при нагреве способны потерять до 20% мощности.
  • Пленочные батареи продолжают выработку энергии даже при рассеянном солнечном свете, в отличие от кристаллов, которые не генерируют энергию в пасмурную погоду. При слабом или рассеянном свете аморфная пленка способна вырабатывать до 20% энергии от своих номинальных показатели. Не слишком много, но лучше, чем ничего.
  • Стоимость кристаллических панелей гораздо выше, чем пленочных. Причем цена на последние продолжает снижаться из-за активного наращивания объемов их производства.
  • Пленочные солнечные батареи имеют меньшее количество дефектов и уязвимых мест. Дело в том, что жёсткие пластины при формировании панели спаиваются между собой, а пленка устанавливается в корпус конструкции в целом виде.

Если подвести итоги и вывести их в таблицу, то сравнительные характеристики пленочных аморфных и жестких кристаллических солнечных фотоэлементов будут выглядеть следующим образом:

Параметры Кристаллические панели Аморфные тонкопленочные батареи
КПД изделий 9÷20% 6÷12%
Выходное напряжение одного фотоэлемента Около 0,5 В Около 1,7 В
Световой спектр максимальной чувствительности Ближе к красному цвету, то есть для эффективной работы необходимо яркое солнце. Ближе к ультрафиолету, то есть восприимчивы и к рассеянному освещению.
Гибкость Хрупкие и ломкие, требуют обязательной жесткой основы и надежной защиты от механического воздействия. Гибкие, легко гнутся, не заламываются.
Надежность при эксплуатации в экстремальных условиях Требуют жесткой основы и надежной защиты от механического воздействия. Более устойчивы к механическим воздействиям, хотя тоже требуют защиты.
Долговечность При должной защите, эксплуатируются длительное время, но с годами постепенно снижается эффективность работы изделий. Качественные изделия, выполненные с соблюдением технологии, выгорают на солнце на 4% за первые 4÷5 лет эксплуатации. Дешевые китайские аналоги могут подвести через 2÷3 года.
Вес Тяжелые. Легкие.

Необходимо уточнить, что производятся и комбинированные варианты солнечных батарей, то есть состоящие из кристаллических и аморфных элементов. То есть используются по максимуму все преимущества обоих типов. Однако, стоимость подобных изделий весьма высока, поэтому они не настолько популярны, как упомянутые выше батареи.

Что влияет на эффективность солнечных батарей?

Чтобы не удивляться тому, что солнечные батареи работают с разной эффективностью в различные периоды, необходимо выделить факторы, которые влияют на КПД системы. Причем названные ниже моменты действуют на солнечные батареи всех типов, но с различной интенсивностью.

  • При повышении температуры производительность любых фотоэлементов панелей снижается.
  • При частичном затемнении, например, если солнце попадает только на часть панели, а какое-то количество элементов остается неосвещенным, выходное напряжение падает за счет потерь неосвещенных пластин.
  • Панели, оснащенные линзами для концентрирования излучения, становятся совершенно неэффективными в облачную погоду, так как пропадает эффект фокусирования потока света.
  • Для достижения высокой эффективности работы солнечной батареи необходим правильный подбор сопротивления нагрузки. Поэтому панели подключаются не напрямую к приборам или аккумулятору, а через управляющий системой контролер, который обеспечит оптимальный режим функционирования батареи.

Недостатки солнечных батарей

У солнечных батарей существует ряд недостатков, узнав о которых многие хозяева жилья сразу отказываются от затеи их приобретения и установки.

  • Для получения достаточного количества энергии необходимо установить весьма большое количество батарей довольно больших размеров. Понятно, что для их размещения потребуются большие площади. Многие собственники частных домов используют для их монтажа солнечную сторону крыши.

  • Нельзя забывать, что батарея будет работать эффективно, только если ее лицевая сторона будет подвергаться периодической очистке от насевшей пыли, грязи, разводов высохшей дождевой воды. А это значит, что к поверхности необходимо обеспечить удобный и легкий доступ.
  • Солнечные батареи недостаточно эффективно функционируют в сумерках и совершенно не работают в ночные часы. Чтобы использовать энергию от них в любое время суток необходимо подключение к нескольким аккумуляторам, которые за солнечный период накапливают энергию.
  • Для большого количества аккумуляторов, если система планируется в качестве основного источника энергии, может потребоваться отдельное помещение.

  • Солнечная энергия считается экологически чистой, однако сами пластины фотоэлементов содержат в себе такие токсичные вещества, как кадмий, свинец, мышьяк, галлий и т.п. При нагревании конструкции данные вещества могут выделяться не только в окружающую среду, но и проникать в помещения дома, если батареи установлены на крыше или балконе дома. Оптимальным вариантом будет установить систему в отдалении от жилых строений.

  • При установке батарей на открытой площадке, для более высокой эффективности их работы, систему часто снабжают специальным фотоэлементом, реагирующим на положение Солнца, и поворотным механизмом, который будет поворачивать их вслед за движением светила. Эффективность повышается, но зато возрастает сложность системы и стоимость реализации проекта.
  • Пока что не приходится говорить о высокой эффективности работы подобных систем. Их КПД составляет в самом лучшем случае 20%, остальные 80% воспринятой поверхностью солнечной энергии уходят на нагрев самой батареи, средняя температура которой может достигать 55÷60 градусов. Как уже говорилось выше, при нагреве фотоэлементов, эффективность их работы падает.
  • Чтобы предотвратить перегревание батарей, применяют те или иные системы принудительного охлаждения. Например, устанавливаются вентиляторы или насосы, перекачивающие хладагент. Понятно, что такие приборы также требуют электроэнергии, а также периодического обслуживания. Кроме того, они могут значительно снизить надежность работы всей конструкции. Ну а проблема эффективного пассивного охлаждения батарей пока не решается.

Как собрать солнечную батарею в домашних условиях?

Если после изучения представленной выше информации желание заняться изготовлением солнечной батареи не пропало, можно поэкспериментировать, создав и проверив собственное творение. Далее будет подробно рассмотрена сборка панели из монокристаллических пластин.

В показанном примере домашний мастер собирает панель габаритами 750×960 мм, состоящую из 36 жёстких монокристаллических пластин размером мм. Пластины устанавливаются в четыре ряда, по 9 фотоэлементов в каждом. Между фотоэлементами выдерживается зазор порядка 10÷12 миллиметров.

Иллюстрация Краткое описание выполняемых операций
Для работы потребуются, прежде всего, сами пластины. Мастер рекомендует приобретать их с запасом, так как они могут иметь разные параметры выходного напряжения, а из них необходимо будет выбрать 36 штук, имеющих наиболее близкие друг к другу показатели.
Шина - это медная луженая лента, то есть уже покрытая оловом, что упрощает ее пайку. Потребуется порядка 10 метров узкой шины шириной в 1,6 мм и 2 метра широкой, шириной в 5 мм.
Для электромонтажных работ необходимо подготовить обычный паяльник на 40 Вт. флюс для пайки - это канифоль, растворенная в спирте, спирт для обезжиривания поверхностей под пайку и их последующей очистки от остатков флюса, ватные диски и палочки.
В качестве основы для монтажа всего модуля в данном случае используется акриловое стекло толщиной 5 мм. Для последующей герметизации фотоэлементов мастер решил использовать прочную бесцветная прозрачная поливинилхлоридную пленку ORACAL®751, которая часто применяется для закрепления рекламы на транспортных средствах.
Несколько слов о том, почему выбрана ширина шины именно 1,6 мм.
Металл имеет свойство при нагревании расширяться, а при остывании, соответственно, сжиматься. На солнечной батарее этот процесс будет происходить постоянно, то есть днем припаянные шины будут увеличиваться в размерах, а ночью - наоборот, что не особо полезно для конструкции.
На опыте мастер испытал ленту шириной в 2 мм, и все-таки остановил свой выбор именно на ширине 1,6 мм. По токопроводящим качествам эти шины не особо отличаются между собой, а более узкая все же меньше повержена линейной деформации.
Подготовив все необходимое, имеет смысл в первую очередь произвести сортировку пластин.
Как говорилось выше, несмотря на то, что это одна модель, они зачастую могут иметь разные показатели в практической работе. А для гармоничной работы батареи значения вырабатываемого напряжения должны быть максимально близкими друг к другу. Например, в данном случае при проведении проверки обнаружилось, что фотоэлементы в равных условиях (при искусственном освещении) могут вырабатывать от 0,19 до 0,35 вольт.
Лучше, если в одной панели будут собраны элементы, имеющие максимально близкие значения, скажем, от 0,30 до 0,33 вольт. Если в комплексе будет установлен один или два элемента, значительно отличающиеся по выходному напряжению, то они будут создавать никому не нужное сопротивление, и станут перегреваться.
Таким образом, отбраковываются пластины, явно выпадающие из общей массы.
При монтаже пластин между ними будет оставляться зазор в 10÷12 мм. Он нужен для того, чтобы пленка, фиксирующая элементы на акриловом стекле, удерживала их со всех сторон.
Далее, необходимо уложить на столе две пластины на расстоянии в 10 мм, и по ним замерить, какой длины необходимо нарезать узкие шины.
Как можно видеть на внешней стороне пластин для скрепления предусмотрены две металлические токосъемные полосы, а на обратной ее стороне места фиксации указаны точечно, окошками.
На лицевой стороне пластины от ее верхнего края необходимо отступить примерно 3 мм.
На обратной стороне второй панели шина также должна не доходить до нижнего края на эти же 2÷3 мм.
После определения длины одной соединительной шины, остальные соединительные элементы отмеряются по ней. Для каждых двух пластин потребуется по два отрезка шины, то есть всего нужно 72 штуки.
В нарезанном виде шины выглядят, как показано на фото. Вовсе не обязательно заготавливать сразу все отрезки - их можно нарезать по ходу работы. Однако если они все-таки будут заготовлены все сразу, то рекомендовано их собрать и сцепить резинкой. Так они не потеряются, и не будут мешаться на столе.
Сначала шины припаиваются к лицевой стороне всех пластин.
Но перед началом пайки металлические токосъемные полосы на пластинах необходимо подготовить, обезжирив спиртом. Для этой работы удобно использовать ватные палочки - их обмакивают в спирт и проходятся по полоске.
Этот процесс необходим для повышения качества пайки.
Следующим подготовительным этапом идет нанесение на очищенные спиртом полоски канифольного флюса.
Лучше, если он будет налит в эластичную емкость в виде маркера (клеевого карандаша) с мягким наконечником. Так будет легче работать, при необходимости выдавливая и распределяя необходимое количество состава.
Следующим шагом идет припаивание шин к внешней стороне пластин.
Шина укладывается на металлическую контактную полоску и выравнивается. Далее, придерживая бо́льшую часть шины, аккуратно прижав ее к полосе, ее верхнюю сторону фиксируют паяльником на 20÷30 мм по длине.
Дополнительный припой при этом не используется – вполне достаточно слоя лужения на самой шине.
Теперь она закреплена и не сможет сдвинуться, поэтому ее оставшуюся длинную сторону закрепить на поверхности будет совсем просто.
Для этого пластину необходимо повернуть к себе противоположной стороной, так чтобы длинная часть шины оказалась под рукой.
Придерживая шину и слегка ее натягивая, по ней аккуратно проводят паяльником, следя за тем, чтобы он не соскользнул в сторону. Луженая лента хорошо припаивается к правильно подготовленной поверхности - достаточно один раз без спешки провести по ней хорошо разогретым паяльником.
Если на ленте останутся заусеницы, то их сразу же необходимо загладить, так как эта сторона пластин должна быть прижата к акриловому стеклу.
Припаяв обе ленты к пластине, их необходимо протереть спиртом с помощью ватной палочки или диска. Необходимо удалить с поверхности весь оставшийся флюс.
Таким же образом последовательно подготавливаются все 36 пластин, или же только 9 фотоэлементов, чтобы собрать одну из четырех полос солнечной панели.
Здесь каждый мастер поступает так, как ему будет удобнее.
Далее будет рассмотрена сборка подготовленных фотоэлементов в одну полосу. Таким же способом производится и соединение остальных трех полос солнечной панели.
Вначале берется пластина, которая будет первой в полосе.
Она укладывается на стол лицевой стороной вниз, вместе с припаянными к ней шинами. Затем полосы под пайку, выделенные на обратной стороне пластины контактными окошками, обрабатывается спиртом, а потом флюсом.
Далее, отступив от края примерно 3 мм по линии, проходящей через окошки, укладывается отрезок шины, и по тому же способу, что и с внешней стороны, припаивается к поверхности.
Свободные концы шин должны расположиться в противоположном направлении относительно припаянных к лицевой поверхности – они будут нужны при коммутации всего ряда элементов в общую батарею широкими шинами.
Теперь необходимо соединить между собой первую и вторую пластины ряда. Для этого концы шин, припаянных к лицевой стороне первой пластины, необходимо вывести на тыльную сторону второй пластины.
Пластины при этом размещаются параллельно друг другу на установленном расстоянии (10 мм). Для удобства можно на рабочем столе заранее выполнить разметку, то есть сделать своеобразный шаблон взаимного расположения пластин.
Точки припаивания контактов обрабатываются спиртом, и затем на них наносится флюс.
Теперь можно осуществить припаивание шин.
Для этого по ним также аккуратно, не торопясь, проводят разогретым паяльником. После окончания пайки обеих шин, их также необходимо протереть спиртом для удаления оставшегося флюса.
Далее, таким же образом коммутируется третья и все последующие пластины ряда.
В результате должно получиться четыре полосы по 9 фотоэлементов, соединенных так, как было показано на иллюстрациях.
Готовые, спаянные ряды фотоэлементов поочередно укладываются на заранее подготовленное акриловое стекло необходимого размера. От краев элементов до края стекла должно быть выдержано расстояние в 50÷60 мм. На стекле ряды временно фиксируются короткими полосками прозрачного скотча.
«Золотое правило» последовательной коммутации источников питания постоянного тока: плюс предыдущего элемента соединен с минусом последующего – и так далее.
В рядах это правило соблюдено. Теперь очень важно его не нарушить и при укладке рядов в батарею.
Так, выступающие слева отрезки шин первого и третьего ряда должны быть припаяны на внешней стороне панели, которая в данном случае повернута к акриловой поверхности. Во втором и четвертом ряду должны выступать концы шин, зафиксированные на тыльной светлой стороне пластин. Если допустить ошибку, то последовательное соединение нарушится, и батарея работать не будет.
В результате конструкция уложенной панели должна будет выглядеть следующим образом.
Когда все ряды будут закреплены на стекле скотчем, их необходимо объединить в одну систему.
Электрическое соединение осуществляется по представленной схеме.
В результате сверху окажется «плюс», снизу «минус».
В качестве соединительных элементов используется широкие шины – это хорошо показано на схеме выше. К ним припаиваются выступающие концы тонких шин.
Излишки после припаивания следует откусить кусачками.
На этой фото хорошо показана крайняя точка коммутации шин.
Закончив работу, панель необходимо проверить на работоспособность с помощью тестера, переключив его на вольтметр и установив щупы на плюс и минус.
Проверку панели можно сначала произвести на рабочем столе – больших показателей не будет, но собранная панель продемонстрирует, что она «живая».
А затем можно провести проверку, вынеся батарею на солнце.
К крайним плюсовой и минусовой шинам закреплены щупы мультитестера.
Даже при облачной погоде на холостом ходу батарея выдает 19,4 вольт - это говорит о правильности соединения панелей.
Солнца на момент проверки не было, и ток невелик, всего около 0,5 ампера. Но даже в пасмурную погоду батарея вырабатывает около 10 ватт энергии.
Параллельно рекомендуется проверить пластины на перегрев - это несложно прочувствовать тыльной стороной ладони.
Если отдельные пластины на общем фоне явно перегреваются, то их желательно сразу же заменить – это пока сделать несложно.
Если батарея работает нормально, то можно ее окончательно герметизировать - закатывать в пленку.
Эксплуатационный срок этой пленки семь лет, но как показывает практика, она отлично функционирует и дольше.
Пленка имеет клеевой слой, закрытый защитной подложкой, которая снимается по мере наклеивания покрытия на фотоэлементы и акриловое стекло.
Первое, что необходимо сделать - это разложить пленку сверху конструкции и выровнять край, от которого начнется ее наклеивание. От того, насколько будет выровнен край, зависит качество приклеивания всего полотна.
Должна быть достигнута полная герметизация, без складок и пустот, так как пленка предназначена для надежной защиты фотоэлементов от любых внешних воздействий.
Далее, необходимо аккуратно отделить защитный слой от пленки по всему краю, примерно на 40 мм, сразу закрепив ее на стекле.
Эта операция проводится очень аккуратно, при приклеивании пленка разравнивается и разглаживается.
Здесь необходимо помнить, что отклеить и выровнять определенный участок пленки - уже не получится, поэтому необходимо делать работу качественно сразу.
Пленку нельзя натягивать, но в то же время она и не должна собираться складками.
Защитная подложка подгибается вниз и по мере приклеивания постепенно снимается. Освободив 20÷30 мм пленки, ее приглаживают к фотоэлементам и просветам между ними, то есть к акриловому стеклу.
Процесс закатывания батареи в пленку - длительный и кропотливый, поэтому необходимо набраться терпения и выполнять его, не торопясь.
Если пленка все-таки замялась или ушла в сторону, ее нельзя отклеивать, так как повредятся фотоэлементы. В этом случае необходимо вырезать и наклеить сверху уже закрепленной пленки дополнительный фрагмент.
Главное - закрыть всю поверхность батареи. На этой иллюстрации показан закатанный в пленку край панели. Хорошо видно, что идеальная гладкость не требуется, главное - плотное прилегание пленки по всей площади.
Когда пленка будет наклеена, можно проводить испытания готовой панели.
Для этого батарею необходимо вынести на солнце и снова подключить к ней тестер.
Как можно видеть, батарея выдает напряжение на выходах почти 20 вольт.
Затем проверяется ток короткого замыкания - он составил 3.94 ампер. А это уже, ни много, ни мало – почти 80 ватт.
Для проверки под нагрузкой к батарее через амперметр была подключена лампочка на 24 В.
Итог на фотографии – горит хоть и не в полный накал, но достаточно ярко.

Многие мастера, кроме стекла и пленки, используют еще и обрамление батареи, одевая ее в жесткую раму. Это придает конструкции необходимую прочность и повышает ее надежность.

Если планируется собрать и использовать несколько солнечных батарей, то их соединяют или последовательно - для увеличения напряжения на выходе, или параллельно – так можно добиться более высоких показателей тока и суммарной мощности

Комплекс панелей через контроллер подключается к аккумулятору - накопителю энергии, а уже от него идет распределение на точки потребления, напрямую или через инвертор.

* * * * * * *

Итак, как можно видеть из представленной информации, батарею вполне можно собрать своими руками. Потребуется наличие некоторых знаний электротехники и монтажа, усидчивость и внимательность.

Другое дело - что предварительно стоить очень тщательно взвесить ожидаемый эффект от батареи и стоимость комплектующих и всего необходимого для системы оборудования. Насколько система получится рентабельной, тем более с учетом местных климатических условий? Не превратится ли ее создание просто в «игрушку» для деятельного мужчины среднего возраста?

Возможно, некоторые вопросы по этому поводу снимет размещенный ниже видеосюжет:

Видео: Основные ошибки, допускаемые начинающими при планировании создания домашних солнечных электростанций

Комфортность проживания в домах и квартирах современного человека с годами требует все большего количества электроэнергии. Но в современных условиях себестоимость каждой единицы электроэнергии неуклонно повышается, что, соответственно, сказывается и на затратах. Поэтому вопрос о переходе на альтернативные источники электроэнергии является наиболее актуальным. Одним из способов обеспечить независимость в получении электроэнергии является возможность применять для этих целей солнечные батареи для дома.

Эффективная альтернатива или всеобщее заблуждение?

Разговоры об автономном питании бытовых приборов и освещении в домах с использованием солнечной энергии ведутся еще с середины прошлого века. Развитие технологий и всеобщий прогресс позволили приблизить эту технологию к обыкновенному потребителю. Утверждение о том, что использовать солнечные батареи для дома станет довольно эффективным способом замены традиционных энергосетей, можно было бы считать бесспорным, если бы не пара существенных «но».

Основным требованием эффективности использования гелиевых батарей является количество солнечной энергии. Устройство солнечной батареи позволяет эффективно пользоваться энергией нашего светила только в регионах, где большую часть года солнечно. Необходимо также принимать во внимание и широту, на которой монтируются солнечные батареи, - чем выше широта, тем меньшей силой обладает луч солнца. В идеале можно добиться эффективности около 40%. Но это в идеале, а на практике все несколько иначе.

Следующий момент, на который стоит обратить внимание, - необходимость использования достаточно больших площадей, позволяющих смонтировать автономные солнечные батареи. Если батареи планируется размещать на дачном участке, загородном доме, коттедже, то здесь проблем не будет, а вот живущим в многоквартирных домах думать об этом придется серьезно.

Солнечная батарея - что это такое?

Устройство солнечной батареи основано на способности фотоэлементов преобразовывать солнечную энергию в электричество. Соединенные в общую систему, эти преобразователи создают многоячеистое поле, каждая ячейка которого под воздействием солнечной энергии становится источником электрического тока, который затем аккумулируется в специальных устройствах - аккумуляторах. Разумеется, что мощность такого устройства тем выше, чем больше данное поле. То есть чем больше в нем фотоэлементов, тем большее количество электроэнергии оно способно произвести.

Но это не значит, что только огромные площади, на которых возможна установка солнечных батарей, могут обеспечить необходимой электроэнергией. Существует множество гаджетов, которые имеют возможность работать не только от привычных всем автономных источников питания - батареек, аккумуляторов - но и использовать энергию солнца. В конструкции таких приборов вмонтированы портативные солнечные батареи, дающие возможность как подзаряжать устройство, так и работать автономно. Например, обычный карманный калькулятор: в солнечную погоду, положив его на стол, можно обеспечить подзарядку батареи, что продлевает срок ее службы на долгие годы. Существует масса различных устройств, где такие батареи используются: это и ручки-фонарики, и фонарики-брелоки и т. д.

На дачных и загородных участках в последнее время стало модным использовать для освещения фонарики на солнечных батареях. Экономичное и несложное устройство обеспечивает освещение вдоль садовых дорожек, на террасах и во всех необходимых местах, используя электроэнергию, накопленную в светлое время суток, когда светит солнце. Экономные лампы освещения способны расходовать эту энергию достаточно долгое время, что и обеспечивает большой интерес к таким устройствам. Освещение на солнечных батареях используется и в домах, коттеджах, а также подсобных помещениях.

Типы автономных солнечных батарей

Существует два типа преобразователей солнечной энергии, обусловленных устройством самой батареи, - пленочные и кремневые. К первому виду относятся тонкопленочные батареи, в которых преобразователи представляют собой пленку, изготовленную по особой технологии. Еще их называют полимерными. Такие батареи устанавливаются в любом доступном месте, но обладают несколькими недостатками: им нужно много места, низкий коэффициент полезного действия и при даже средней облачности их энергоэффективность падает на 20 процентов.

Кремневый тип солнечных батарей представлен монокристаллическими и поликристаллическими устройствами, а также аморфными кремниевыми панелями. Монокристаллические батареи состоят из множества ячеек, в которых встроены кремневые преобразователи, соединенные в общую схему и заполненные силиконом. Просты в эксплуатации, с высоким (до 22%) КПД, водонепроницаемые, легкие и гибкие, но для эффективной работы требуют прямого солнечного потока. Облачная погода может стать причиной полного прекращения выработки электроэнергии.

Поликристаллические батареи от монокристаллических отличаются количеством преобразователей, размещенных в каждой ячейке и установленных разнонаправленно, что обеспечивает их эффективную работу даже при рассеянном свете. Это наиболее распространенный вид батарей, которые применяются и в городских условиях, хотя их КПД несколько ниже, чем у монокристаллических.

Аморфные кремниевые источники питания, несмотря на свою низкую энергоэффективность - около 6%, тем не менее считаются более перспективными. Они поглощают солнечный поток в двадцать раз больше, чем кремниевые, и намного эффективнее в пасмурные дни.

Все это промышленные устройства, которые имеют свою - и в настоящее время не очень демократичную - цену. А возможно ли собирать солнечные батареи своими руками?

Общий принцип выбора и компоновки деталей для солнечных батарей

В связи с последними требованиями к производству электрической энергии, которые направлены на переход с традиционного сырья, используемого при его производстве, тема солнечных источников питания принимает все более практическое значение. Массовое производство элементов для создания собственной электрической сети уже предлагает потребителю различные варианты обеспечения автономной электроэнергией. Но пока еще стоимость автономного солнечного источника питания достаточна высока и недоступна для массового потребителя.

Но это не значит, что нельзя смастерить солнечные батареи своими руками. При этом просто необходимо определиться со способом сборки такого устройства. Или, приобретая отдельные элементы, компоновать их самостоятельно, или делать все составные части собственноручно.

Из чего, собственно, состоит система питания, основанная на преобразовании солнечной энергии в электрический ток? Основным, но не последним из ее элементов, является солнечная батарея, конструкция которой была рассмотрена выше. Вторым элементом в схеме является контроллер солнечной батареи, задача которого состоит в контроле зарядки аккумуляторных батарей электрическим током, полученным в солнечных батареях. Следующей частью домашней солнечной электростанции является батарея электрических аккумуляторов, в которой и накапливается электричество. И последним элементом «солнечной» электрической цепи будет инвертор, позволяющий полученное электричество небольшого вольтажа использовать для бытовых приборов, рассчитанных на 220 В.

Рассматривая каждый элемент домашней гелиоэлектростанции отдельно, можно увидеть, что каждый ее элемент может быть приобретен в розничной сети, на электронных аукционах и т. д. или собран собственноручно. И даже контроллер солнечной батареи своими руками можно изготовить - при наличии определенных навыков и теоретических знаний.

Теперь что касается задач, которые ставятся перед собственной электростанцией. Они просты и сложны одновременно. Простота их в том, что солнечная энергия используется для определенных целей: освещения, отопления или полного обеспечения потребностей жилища. Сложность - в правильном расчете требуемой мощности и соответствующем подборе комплектующих частей.

Начинаем собирать солнечную панель

Сейчас можно найти массу предложений о том, как и из чего можно собрать солнечные панели. Способов много, и выбрать можно по своему предпочтению. В данном материале рассматриваются базовые принципы, которые необходимо использовать, изготавливая солнечные батареи своими руками.

Прежде всего, нужно определиться с мощностью, которую необходимо получить, и решить, на каком напряжении будет работать сеть. Существует два варианта сетей на солнечной энергии - с постоянным током и переменным. Переменный ток более предпочтителен из-за возможности разнесения потребителей электроэнергии на значительное расстояние - более 15 метров. Это как раз для небольшого дома. Не вдаваясь глубоко в расчеты и отталкиваясь от опыта тех, кто уже пользуется солнечной энергией на своих дачах, можно с уверенностью говорить о том, что на широтах Москвы - а опускаясь южнее, эти показатели будут, естественно, выше - один квадратный метр солнечных панелей может производить до 120 ватт в час. Это если при сборке использовать поликристаллические элементы. Они более привлекательны по цене. А суммарную мощность вполне реально определить, сложив всю потребляемую мощность каждого отдельного электроприбора. Очень приблизительно можно сказать, что для семьи из 3-4 человек, требуется около 300 киловатт в месяц, которые могут быть получены от солнечных панелей в 20 кв. метров.

Также можно встретить описание сетей на солнечной энергии, использующих панели из 36 элементов. Каждая из панелей имеет мощность около 65 Ватт. Солнечная батарея для дачи или небольшого частного дома может состоять из 15 таких панелей, которые способны вырабатывать до 5 кВт в час общей электрической мощности, имея собственную мощность в 1 кВт.

Солнечные панели своими руками

А теперь о том, как сделать солнечную батарею. Первым, что придется приобрести, будет набор преобразующих пластин, количество которых зависит от мощности самодельной гелиоэлектростанции. Для одной батареи нужно будет 36 штук. Можно воспользоваться набором Solar Cells, а также приобрести поврежденные элементы или с дефектами - это скажется лишь на внешнем виде батареи. Если они рабочие, то на выходе получится почти 19 Вольт. Спаивать их нужно с учетом на расширение - оставляя зазор до пяти миллиметров между ними. Устройство солнечной батареи своими руками требует предельной внимательности при исполнении пайки фотопластинок. Если пластинки приобретались без проводников, то их необходимо напаивать вручную. Процесс сложный и ответственный. Если работа выполняется паяльником на 60 Вт, лучше всего последовательно с ним подключить простую стоваттную лампочку.

Схема солнечной батареи очень проста - каждая пластина спаивается с другими последовательно. Стоит отметить, что пластины очень хрупкие, и их спайку желательно проводить с использованием какого-нибудь каркаса. При распайке фотопластинок также необходимо помнить о том, что в цепь нужно вставить предохранительные диоды, предотвращающие разряд фотоэлементов при затемнении или снижении освещенности. Для этого шины половинок панели выводятся на клеммник, создавая среднюю точку. Эти диоды предотвращают также разряд аккумуляторов ночью.

Качество пайки - основное требование к безупречной работе солнечных батарей. Перед установкой подложки необходимо все места пайки протестировать. Выводить ток рекомендуется с использованием проводов малого сечения. Например, акустическим кабелем с силиконовой изоляцией. Все проводники необходимо закрепить герметиком.

Затем стоит определиться с поверхностью, на которую эти пластины будут крепиться. Вернее, с материалом для ее изготовления. Самым подходящим по характеристикам и легкодоступным является стекло, которое имеет максимальную пропускную способность светового потока по сравнению с оргстеклом или карбонатом.

Следующим шагом станет изготовление короба. Для этого используется алюминиевый уголок или деревянный брус. В каркас на герметик сажается стекло - желательно тщательное заполнение всех неровностей. Следует заметить, что герметик должен высохнуть полностью - во избежание загрязнения фотопластинок. Затем на стекло крепится готовый лист из спаянных фотоэлементов. Способ крепления может быть различный, но солнечные батареи для дома, отзывы о которых распространены, закреплялись в основном с помощью прозрачной эпоксидной смолы или герметика. Если эпоксидку наносят равномерно на всю поверхность стекла, после чего на нее помещают преобразователи, то герметиком крепят в основном на каплю посредине каждого элемента.

Для подложки используется различный материал, который также крепится на герметик. Это могут быть и древесно-стружечные плиты небольшой толщины или лист ДВП. Хотя можно, опять же, залить и эпоксидной смолой. Корпус батареи должен быть герметичным. Сделанная таким способом солнечная батарея своими руками, схема сборки которой оговаривалась выше, даст 18-19 Вольт, обеспечив зарядку 12-вольтового аккумулятора.

Можно ли сделать преобразователь солнечной энергии своими руками?

Мастеровые люди, обладающие обширными познаниями в электронике, могут сделать фотоэлементы для преобразования солнечной энергии в электрическую и самостоятельно. Для этого используются кремневые диоды, вернее их кристаллы, освобожденные из корпусов. Процесс этот трудоемкий, и начинать его или нет, каждый решает самостоятельно. Можно брать диоды, использующиеся в мостовых схемах выпрямителей напряжения и стабилизаторах - Д226, КД202, Д7 и др. Находящийся в этих диодах полупроводниковый кристалл при попадании на него солнечного света становится точно так же как и фотопластинка. Но добраться до него и при этом его не повредить - довольно сложный и кропотливый процесс.

Всем, кто решится заняться созданием элементов для преобразователя самостоятельно, стоит запомнить следующее - если удалось аккуратно разобрать и спаять батарею, состоящую всего из двадцати диодов марки КД202 по схеме из параллельно соединенных 5 групп, то можно получить напряжение около 2 В с током до 0,8 Ампера. Этой мощности хватит лишь на питание небольшого радиоприемника, имеющего в своей схеме всего один или два транзистора. Но чтобы из них получилась полноценная солнечная батарея для дачи, нужно очень сильно постараться. Огромный труд, большие площади, громоздкость конструкции делает это занятие бесперспективным. Но для маленьких приборов и гаджетов это вполне подходящая конструкция, которую могут сделать все, кто любит заниматься электротехникой.

Можно ли использовать светодиоды для солнечных панелей?

Светодиодная солнечная батарея является чистым вымыслом. Из светодиодов собрать даже небольшую солнечную микропанель практически невозможно. Вернее, создать можно, но стоит ли? С помощью солнечного света вполне реально получить на светодиоде около 1,5 вольта напряжения, но при этом сила сгенерированного тока очень мала, а для его генерации требуется только очень сильное солнце. И еще - светодиод при подаче на него напряжения сам выделяет лучевую энергию, то есть светится. А значит, те его собратья, на которые попал солнечный свет большей силы, будут вырабатывать электричество, которое этот светодиод сам же и будет потреблять. Все правильно и просто. И разобраться при этом в том, какие светодиоды производят, а какие потребляют энергию, просто невозможно. Даже если использовать десятки тысяч светодиодов - а это непрактично и неэкономично - толку никакого не будет.

Отапливаем дом солнечной энергией

Если про реальную возможность обеспечить бытовые электроприборы «солнечным» током уже говорилось выше, то для обогрева жилья солнечной энергией существуют два варианта. И чтобы использовать солнечные батареи для отопления дома, нужно знать некоторые требования, обязательные для выполнения этой задачи.

В первом варианте использование солнечной энергии для отопления происходит с помощью иной системы, нежели обычная электрическая сеть. Устройство для отопления дома, использующее солнечную энергию, называется гелиосистема и состоит из нескольких приборов. Основным рабочим устройством является вакуумный коллектор, который превращает солнечный свет в тепло. Он состоит из множества стеклянных трубок небольшого диаметра, в которые помещена жидкость с очень низким порогом нагрева. Нагреваясь, эта жидкость в дальнейшем передает свое тепло воде в баке-накопителе объемом не менее 300 литров воды. Затем эта нагретая вода подается на отопительные панели, выполненные из тонких медных труб, которые, в свою очередь, отдают полученное тепло, прогревая воздух в помещении. Вместо панелей можно, конечно, использовать и традиционные радиаторы, но эффективность их намного ниже.

Конечно, для отопления можно использовать и солнечные панели, но в этом случае нужно будет согласиться с тем, что на нагревание воды в бойлере с помощью ТЭНов потребуется львиная доля генерируемой батареями энергии. Простые расчеты показывают, что для нагревания бойлером 100 литров воды до 70-80 ⁰С требуется порядка 4 часов. За это время водяной котел с нагревателями на 2 кВт мощности потребит около 8 кВт. Если солнечные батареи в суммарной мощности смогут вырабатывать до 5 кВт в час, то проблем с энергообеспечением в доме не будет. Но если солнечные панели имеют площадь меньше 10 кв. метров, то такие мощности для полноценного обеспечения электрической энергией не подойдут.

Использование вакуумного коллектора для отопления дома оправдано в том случае, когда это полноценный жилой дом. Схема работы такой гелиосистемы обеспечивает теплом все жилище в течение круглого года.

И все-таки это работает!

В конце концов, солнечные батареи, своими руками собранные энтузиастами, являются вполне реальными источниками питания. И если использовать в цепи 12-вольтные аккумуляторы с током не менее 800 А/час, оборудование по превращению напряжения из низкого в высокое - инверторы, а также контроллеры напряжения на 24 В с рабочим током до 50 Ампер и простой «бесперебойник» с током до 150 Ампер, то получится очень приличная электростанция, работающая на солнечных лучах, которая способна обеспечить потребности в электроэнергии жильцов частного дома. Естественно, при определенных погодных условиях.