Канал “Тяп-ляп” представил на рассмотрение кит набор для самостоятельного изготовления из готовых деталей инфракрасного датчика приближения. По мнению ведущего канала, это незаменимая вещь в доме. На плате расписано, детали указаны. Имеется инструкция со схемой. К сожалению, нет описания на русском языке. Главное, что элементы подписаны.
Купить его можно в этом китайском магазине .

Этот датчик реагирует в случае приближения объекта на определённое расстояние. Будет срабатывать реле и включать или выключать схему. Мастер разместить элементы на плате, выполнит пайку и проверит датчик приближения в работе. Перед началом проверка номиналов резисторов. Для этого используется удобный прибор.

Практически элементы вставлены на плату.Остается припаять микросхему и можно приступать к тестированию. Всё готово. Осталось помыть плату.
Характеристики прибора. Напряжение питания 12 вольт, в нагрузку можно подключать от 250 вольт, 10 ампер. Всё готово для испытаний. Всё подключено. В качестве нагрузки будет использована светодиодная лампочка на 12 вольт. Запитывается она от отдельного свинцового аккумулятора. Потребление платы в режиме покоя составляет всего лишь 26 миллиампер. При появлении препятствия лампочка загорается. Реле времени какое-то время работает, выдерживает нагрузку. Затем отключается. Время работы регулируется подстроечным резистором. Попробуем выкрутить его по часовой стрелке. Теперь нагрузка отключается практически одновременно с устранением препятствия. Попробуем наоборот увеличить время работы. Можно выставлять время и гораздо больше, чем показано в испытании.

Касательно дистанции срабатывания. На руку инфракрасный датчик реагирует при приближении на расстояние примерно 10 сантиметров.
Если возьмем объект потолще, например кусок фанеры. Срабатывание осуществилось при приближении на 16 сантиметров. Возникает вопрос: что влияет на расстояние? Объем объекта, его толщина? На лист бумаги произошло срабатывание на расстоянии 12 сантиметров.
Алюминиевый лист дал реакцию при приближении на 30 сантиметров. Попробуем с зеркалом. Зеркало сработало на 50 см. А если отнести подальше, и попробовать перемещать объекты? Расстояние срабатывания увеличилась еще на один дециметр.

Источник: youtu.be/ASsk3xXDMuU

Инфракрасный датчик


На рисунке вверху схема простого инфракрасного датчика, который позволяет сигнализировать о приближении к нему чего-либо.
Дальность работы инфракрасного датчика составляет около метра, это расстояние зависит от конструктивной особенности инфракрасной приемопередающей части устройства, которое выполнено в виде модуля HOA1405. Это такой модуль, внутри которого встроены инфракрасный светодиод и фототранзистор, конструкция модуля на рисунке внизу.

Излученный инфракрасный свет отражаясь от чего-либо попадает в фототранзистор, который подключен к легендарному и вездесущему таймеру NE555, который работает в режиме моностабильного триггера. При достижении определённого сопротивления фототранзистора, которое зависит от интенсивности принимаемого отраженного инфракрасного сигнала, триггер на NE555 меняет своё состояние и из пищалки раздаётся звук, а так же светится светодиод в течение двух минут. Время сигнализации зависит от элементов R4 и C2. В качестве приемопередающего модуля допустимо применить любой другой, либо поставить раздельно светодиод и фототранзистор, однако при раздельном использовании необходимо предусмотреть такую конструкцию, кода фототранзистор не засвечивается светодиодом. Схема простая, лёгкая в повторении и настройки не требует. Можно даже для компактности использовать навесной монтаж. Такой датчик можно применить, например в охранной сигнализации, в системах бесконтактного включения чего-либо и т п, дело фантазии и потребности радиолюбителя.

В данной статье рассмотрим подключение и работу с ИК-датчиком измерения расстояния SHARP GP2Y0A02YK0F.
В отличие от того же , данный датчик имеет гораздо более скромный диапазон измерений, но все равно обладает рядом полезных отличительных свойств. Например, данный датчик позволяет измерять расстояние даже через прозрачные поверхности (правда, теряя точность показаний, но все же).

Подключение датчика:

GND на любой из GND пинов--- ардуино

OUT на любой из аналоговых входов ардуино (в примерах подсоединено к A0)

VCC на + 5 вольт на ардуино

Основные технические характеристики:

Диапазон измерения расстояния: от 20 до 150 см

Аналоговый выход

Размеры: 29.5x13x21.6 мм

Потребление тока: 33 мА

Напряжение питания: от 4.5 до 5.5 В

Её необходимо распаковать и добавить в папку "libraries" в папке с Arduino IDE. Не забывайте перезагрузить среду, если на момент добавления IDEшка была открыта.

В чем особенность данной библиотеки и почему именно её рекомендуем к использованию? Ответ прост и кроется в принципе её работы. Для измерения расстояния используется множество замеров, из которых отбрасываются ошибочные, которые сильно отличаются от соседних. По утверждениям авторов - 12% всех показаний вносят 42% ошибки в итоговое значение расстояния, если не отбрасывать ошибочные измерения.

Перейдем к программному коду - примеру работы с датчиком (пример подойдет также для датчика GP2Y0A21Y, в коде необходимо будет изменить значение model на 1080):

Пример программного кода

#include #define ir A0 //пин, к которому подключен датчик. Обязательно аналоговый! #define model 20150 //модель датчика. 1080 для GP2Y0A21Y, 20150 для GP2Y0A02Y SharpIR SharpIR (ir, model); void setup () { Serial .begin (9600); } void loop () { delay (2000); unsigned long pepe1=millis (); // засекаем время до начала измерений int dis=SharpIR .distance(); // получаем расстояние с датчика Serial .print ("Mean distance: " ); // выводим расстояние в монитор порта Serial .println (dis); unsigned long pepe2=millis ()-pepe1; // считаем время, затраченное на измерение Serial .print ("Time taken (ms): " ); // и выводим его Serial .println (pepe2); }

Датчик предназначен для управления электрооборудованием или для работы с охранной системой. Он реагирует на приближение в нему человека или любого предмета. В зависимости от выставлен­ной подстроечным резистором чувстви­тельности дальность срабатывания может быть от нескольких метров до нескольких сантиметров.

В основе схемы лежит микросхема LM567, которая представляет собой то­нальный декодер. Поскольку настройка на частоту декодирования зависит от частоты встроенного генератора, и фактически ей равна, можно эту частоту использовать в качестве источника импульсов для модуляции инфракрасного излучения.

Частота встроенного генератора микро­схемы зависит от RC-цепи R7-C2. При этом импульсы можно снимать с вывода 5 микросхемы. Что здесь и сделано. Импульсы с вывода 5 А1 через цепь R4-С3 поступают на вход усилителя на тран­зисторах VТ1 и VТ2, на выходе которого (в коллекторной цепи VТ1) включен инфра­красный светодиод HL1.

Таким образом, излучателем ИК-сигнала служит HL1, а приемником является фототранзистор VТ3.

HL1 и VT3 вза­имно располо­жены так, что, прямой оптичес­кой связи между ними нет. Они направлены в одну сторону, — в ту сторону, и между ними имеется непро­зрачная перего­родка, в ка­честве которой может быть, на­пример, столеш­ница стола (например, HL1 на столе, а VТ3 под столом).

Если перед датчиком, состоящим из HL1 и VT3 появляется человек или какой-то предмет, ИК-луч, излученный светодио­дом HL1 отражается от его поверхности, и попадает на фототранзистор VТ3. Так как луч был модулирован импульсами от генератора микросхемы А1, то на эмиттере VТ3 образуются импульсы фототока такой же частоты. Они через подстроечный резистор R6, регулирующий чувствительность, и конденсатор С1, поступают на вход декодера микросхемы А1. Так как по частоте они совпадают с частотой генератора на R7 и С2, а иначе и быть не может, открывается ключ на выходе микросхемы А1, он выходит кол­лектором на её вывод 8. Это создает ток на базе транзистора VТ4. Он открывается и напряжение на его коллекторе поднимается до напряжения питания.

Номинальным питающим напряжением для микросхемы LM567CN является 5V, а вся схема здесь питается напряжением 12V. Поэтому напряжение питания микро­схемы понижено и стабилизировано на уровне 5У параметрическим стабилиза­тором VD2-R11.

ИК-светодиод отечественного произ­водства АЛ123А можно заменить практи­чески любым ИК-светодиодом, предназна­ченным для пультов систем дистанцион­ного управления.

Номиналы R7 и С2 могут существенно отличаться от указанных на схеме. На работу датчика это практически не окажет влияния, потому что одна и та же цепь R7-С2 работает как в генераторе опорной частоты для фазового детектора декодера микросхемы А1, так и в генераторе для модуляции ИК-излучения светодиода. То есть, частоты передачи и приема в любом случае совпадают, потому что генери­руются одним и тем же генератором.

Все примененные конденсаторы должны быть рассчитаны на максимальное напря­жение не ниже напряжения питания.

Чувствительность датчика (дальность реагирования) можно регулировать двумя способами. В первом случае это подстроечный резистор R6, которым регулируется чувствительность декодера. Во втором случае это подбор сопротивления резис­тора R5, который ограничивает ток через инфракрасный светодиод. Выбирать этот резистор меньше 3-4 Ом не следует.

Литература:

  1. «Два автомата управления освеще­нием». ж. Радио, 2008, №3, стр. 37.

Горчук Н.В.

Роботам, как и смерть всем человекам очень нужны органы чувств, чтобы ориентироваться в пространстве. Инфракрасный дальномер Sharp GP2Y0A21YK очень подходит на эту роль, если вам требуется избегать столкновения с препятствиями или знать, где примерно это самое препятствие находится.

Кстати, возможно, у вас дома уже есть один из роботов, где используются похожие датчики. Это практически все вменяемые китайские роботы-пылесосы и, полагаю, многие модели Roomba. И, вероятно, многие другие.

А если уж этим сенсорам нашлось место в более-менее серьезной технике, то и мы найдем им применение, правда?

Чтобы не кривить душой, скажу сразу: я заказывал эти датчики не просто поиграться. Наоборот, с самого начала знал, что они мне пригодятся, чтобы сделать интерактивную лампу, которая меняет интенсивность свечения в зависимости от положения ладони над ней.

Конечно, реальность внесла свои коррективы и в итоге . Иными словами, у нее теперь пять режимов: ночник, светильник с регулировкой яркости, термометр, «северное сияние» с ручной регулировкой и автоматическое северное сияние.

А кроме того - пара сервисных функций: включение и выключение фонового и верхнего освещения в комнате.

Вот как это работает:

Ну а теперь самое время подробнее рассказать о датчике, благодаря которому все и случилось.

Как я говорил в самом начале, Sharp GP2Y0A21YK - это инфракрасный дальномер. А значит, он оснащен ИК-излучателем и ИК-приемником: первый служит источником луча, отражение которого ловит второй. При этом ИК-лучи датчика для человеческого глаза невидимы (хотя можно различить красное мерцание, если посмотреть в датчик) и при такой интенсивности безвредны.

На домашних животных они так же не оказывают никакого влияния.

Согласно характеристики такие:

  • Напряжение питания: 5В
  • Максимальный потребляемый ток: 40 мА (типичный - 30 мА)
  • Диапазон работы: 10 см - 80 см
Что касается конкурентов, то по сравнению с ультразвуковыми сенсорами, например, сверхпопулярным HC-SR04, у этого датчика есть и достоинства, и недостатки. К достоинствам можно отнести все то, что сказано выше, т.е. нейтральность и безвредность.

А недостатки - меньший радиус действия (у HC-SR04 порядка 4 м) и зависимость от внешних помех, в том числе - некоторых типов освещения. Я, к примеру, встречал упоминания, что солнечный свет может влиять на показания датчика.

Датчик поставляется в спартанском комплекте, т.е. сам датчик и кабель с разъемом для подключения к датчику. На другой стороне - просто залуженные провода, что не очень удобно для использования с Arduino Uno, но вполне подходит для контроллеров без распаянных разъемов. Так как я планировал использовать датчик с Arduino Pro Mini, это был вполне подходящий вариант - провода просто запаял в макетную плату.

Провода различаются по цвету: желтый - сигнал, черный - земля, красный - плюс питания (+5В).

Выход датчика аналоговый (хотя в даташите почему-то написано - цифровой). То есть, напряжение на нем пропорционально расстоянию до препятствия. Вместе с тем, как и в случае с ультразвуком, для датчика есть разница между разными типами препятствий.

В связи с этим в даташите Sharp приводит данные при использовании в качестве отражателей эталонных карточек Kodak с коэффициентом отражения 90%. Судя по нему, на 20 см датчик выдает 1.3В.

Давайте сравним с моими экспериментальными данными:

Напоминаю, что аналоговый вход Arduino работает в диапазоне 0В - 5В и имеет 1024 ступеней, отсюда расчет: (5/1024)*(показания датчика). Так что если учесть то, что все своими (дрожащими) руками, то показания вполне вписываются в характеристики датчика. И заодно видно, что черная поверхность вносит свои коррективы.

Так он светит

Вместе с тем, как заметил внимательный читатель, есть и специфика. Суть в том, что когда препятствие находится ближе нижней границы радиуса действия (10 см), датчик начинает считать, что препятствие, наоборот, удаляется (когда накрыл рукой показания зафиксировались на 345).

Примерно так это выглядит:

Отсюда вывод: хотя для многих целей даташит вполне адекватен, иногда имеет смысл провести эксперименты, чтобы потом не было мучительно больно. И это особенно актуально, если датчик несколько заглублен (или закрыт ИК-прозрачным материалом), а значит, может получать отражения от стенок или других элементов корпуса.

Например, я столкнулся с тем, что Евлампия, будучи установленной на штатном месте после успешно проведенных «настольных» тестов, стала сходить с ума. Сначала я думал, что виноваты помехи по питанию и даже поставил параллельно питанию датчика пару конденсаторов (10 мкФ и 0.1 мкФ), подтянул аналоговый вход Arduino к нулю через резистор 10 кОм и даже купил сетевой фильтр-розетку.

Но когда это не помогло, то снова вернулся на стол, где покрутил датчик в разные стороны и увидел, что по факту даже если расстояние до ближайшего препятствия больше 80 см, показания датчика заметно меняются. Так что если ваши подопечные будут неадекватны - проверяйте фактические показания в реальных условиях.

Вот, например, элементарный скетч, который, во-первых, с интервалом в полсекунды выводит показания датчика, а, во-вторых, зажигает светодиод Arduino, если показания попадают в диапазон от 100 до 200:

// Желтый - A0, Черный - земля, Красный - +5В unsigned int l; void setup() { Serial.begin(9600); pinMode(A0, INPUT); pinMode(13, OUTPUT); l = 0; } void loop() { l = analogRead(A0); Serial.println(l); delay(1000); if (l > 100 && l < 200) { digitalWrite(13, HIGH); } else { digitalWrite(13, LOW); } }

Если подводить итог, то датчик, хотя и немного капризен, очень прост в использовании и относительно дешев.

Использовать его можно в роботах, а также для контроля пересечения дверных проемов, в каких-нибудь интерактивных устройствах, управляемых жестами и в чем-то, что еще подскажет фантазия.

Планирую купить +33 Добавить в избранное Обзор понравился +38 +67