Фильтры натрий-катионитные параллельно-точные первой ступени ФИПа I, предназначены для обработки воды с целью удаления из нее ионов-накипеобразователей (Са 2+ и М 2+) в процессе катионирования. Фильтры используются на водоподготовительных установках промышленных и отопительных котельных.

Пример условного обозначения фильтра производительностью 20 м 3 /ч для умеренного климата (У) и категории размещения при эксплуатации (4) по ГОСТ 15150-69: ФИПа I – 1,0-0,6 Na У4. Диаметр - 1000 мм., рабочее давление - 0,6 МПа.

Устройство

Натрий-катионитные параллельно-точные фильтры первой ступени (см. рис. 1) представляют собой вертикальный однокамерный цилиндрический аппарат и состоят из следующих основных элементов: корпуса, верхнего и нижнего распределительных устройств, трубопроводов и запорной арматуры, пробоотборного устройства и фильтрующей загрузки.


Рис. 1. Фильтр натрий-катионитовый параллельно-точные 1-ой ступени ФИПа I

Стальной цилиндрический корпус с эллиптическим верхним и нижним днищами, днища приварены к цилиндрической обечайке фильтра. Корпус фильтра снабжен верхним люком, предназначенным для загрузки фильтрующего материала и периодического осмотра его поверхности и лазом Ду 400 мм для проведения внутренних монтажных работ.

В нижней части обечайки фильтра имеется отверстие для выгрузки фильтрующего материала закрытое заглушкой. В центре верхнего днища фильтра проварен фланец, к которому снаружи присоединен трубопровод, подающий воду на обработку. В центре нижнего днища снаружи приварен патрубок, отводящий отработанную воду.

Верхнее распределительное устройство предназначено для отвода обрабатываемой воды и регенерационного раствора и отвода взрыхляющей воды.

Нижнее распределительное устройство предназначено для обеспечения равномерного сбора обработанной воды, равномерного распределения взрыхляющей воды. Нижнее распределительное устройство представляет собой горизонтальную трубчатую систему с равномерно расположенными по всей поверхности щелевыми колпачками.

Верхнее и нижнее распределительные устройства устанавливаются строго горизонтально.

Фронтовые трубопроводы с запорной арматурой позволяют осуществлять подвод к фильтру и отвод из него всех потоков воды и регенерационного раствора в процессе эксплуатации фильтра.

Пробоотборное устройство размещено по фронту фильтра и состоит из трубок, соединенных с трубопроводами подаваемой на обработку и обработанной воды, вентилей и манометров, показывающих давление до и после фильтра.

Устройство для отвода воздуха служит для периодического отвода воздуха, скапливающегося в верхней части фильтра и представляет собой трубку с вентилем.

Принцип работы

Исходная вода поступает в фильтр под напором и проходит через слой катионита в направлении сверху вниз. При этом происходит умягчение воды путем обмена ионов кальция и магния на эквивалентное количество ионов натрия-катионитовой загрузки.

Цикл работы фильтра состоит из следующих операций: умягчение, взрыхление, регенерация, отмывка.

Рабочий цикл фильтра заканчивается, когда жесткость фильтра начнет превышать 0,1 мг-экв/л. Продолжительность взрыхления 15-30 минут при интенсивности 3-4 л/м 2 .Взрыхление предназначено для устранения уплотнения катионита. Регенерация катионита проводится с целью обогащения его ионами натрия и производится 5-8%-ным раствором NaCl. После регенерации в направлении сверху вниз ионообменный материал отмывается от регенерационного раствора и продуктов регенерации.

Номенклатура и общая характеристика фильтров ФИПа I

Обозначение
типоразмера

Рабочее
давление,
МПа

Условный
диаметр
фильтра, мм

Высота фильтрующего
слоя, мм, не более

Производительность,
м 3 /ч

Масса
комплекта,
кг

ФИПа I-0,5-0,6 Na

ФИПа I-0,7-0,6 Na

ФИПа I-1,0-0,6 Na

ФИПа I-1,4-0,6 Nа

ФИПа I-1,5-0,6 Nа

ФИПа I-2,0-0,6 Na

ФИПа I-2,6-0,6 Na

ФИПа I-3,0-0,6 Na

ФИПа I-3,4-0,6 Na

Фильтры натрий-катионитовые параллельно-точные II -ой ступени ФИПа II

Фильтры ионитные параллельно-точные второй ступени ФИПа II, предназначены для работы в различных схемах установок глубокого умягчения и полного химического обессоливания для второй и третей ступени Na- и Н-катионирования и анионирования. Используются на водоподготовительных установках электростанций, промышленных и отопительных котельных.

Устройство

Ионитные параллельно-точные фильтры второй ступени представляют собой вертикальные однокамерные аппараты. Каждый фильтр состоит из корпуса, нижнего и верхнего распределительных устройств, трубопроводов и запорной арматуры, пробоотборного устройства и фильтрующей загрузки.

Рис. 2. Фильтр натрий-катионитовый параллельно-точные 2-ой ступени ФИПа II

Цикл работы ионитных параллельно-точных фильтров второй ступени состоит из следующих операций:

  • катионирование (анионирование);
  • взрыхление;
  • регенерация;
  • отмывка.

Ионирование происходит следующим образом: вода, прошедшая обработку на ионитных параллельно-точных фильтрах первой ступени, поступает в фильтр и проходит через слой зернистого оинообменного материала в направлении сверху вниз. При этом катионит поглащает из воды ионы Ca 2+ , Mg 2+ и заменяет их эквивалентным количеством ионов H + или Na + . Анионы кислот, образовавшиеся при водород-катионировании (SO 4 2- , Cl - , SiO 3 2-) задерживаются анионитом.

Взрыхление предназначено для устранения уплотнения ионообменного материала, препятствующего свободному доступу регенерационного раствора к его зернам.

Регенерация катионита для обогащения его ионами Na + и H + производится растворами соответственно NaCl (5-8 %-ным) и H 2 SO 4 (1-2 %-ным), регенерация анионита для обогащения его ионами ОН - - раствором NaOH.

Отмывка ионообменного материала от регенерационного раствора и продуктов регенерации обессоленной воды происходит в направлении сверху вниз.

Номенклатура и общая характеристика фильтров ФИПа II

Обозначение
типоразмера

Рабочее
давление,
МПа

Условный
диаметр
фильтра, мм

Высота фильтрующего
слоя, мм, не более

Производительность,
м 3 /ч

Масса
комплекта,
кг

ФИПа II-1,0-0,6 Na

ФИПа II-1,4-0,6 Na

ФИПа II-1,5-0,6 Na

ФИПа II-2,0-0,6 Na

Нижнее и верхнее распределительное устройство

Важным условием, обеспечивающим качество процесса фильтрации, является выбор нижнего дренажно-распределительного устройства (НДРУ). Выбор НДРУ значительно влияет на гидравлические процессы протекания обрабатываемой воды через фильтрующий материал и процесс регенерации, а, значит, и качество работы фильтра.

Нижнее и верхнее дренажно-распределительное устройство предназначено для сбора и отвода из фильтра воды или регенерационного раствора, а также для подвода отмывочной воды или регенерационного раствора.

Указания по монтажу натрий-катионитовых фильтров ФИПа

Монтаж и установка в проектное положение фильтров, должны производиться заказчиком этого оборудования или привлекаемыми им организациями по утвержденному проекту производства монтажных работ, разработанному с учетом требований РД 34.15.027-93 «Сварка, термообработка и контроль трубных систем котлов и трубопроводов при монтаже и ремонте оборудования электростанций» (РТМ-1 с 2002 г.) Москва ПИО ОБТ 2002 г.

Собранная в систему коммуникаций котельной трубопроводная обвязка фильтра подвергается испытаниям на прочность и плотность гидроиспытанием давлением (см. табл.), при этом температура воды должна быть в пределах от 5°С до 40°С, а температура воздуха не должна быть менее 5° С. Время выдержки под пробным давлением - 10 мин.

Подготовка фильтра к работе

1. Перед загрузкой фильтрующего материала в фильтр необходимо:

подачей воды через дренажную систему убедиться в том, что в верхнем и нижнем распределительных устройствах отверстия не засорены и система работает равномерно.

2. Для натрий-катионитного фильтра применяются следующие фильтрующие материалы: сульфоуголь, катионит КУ-2.

3. Во избежание повреждения колпачков, первый слой катионита (20-40 мм) уложить с особой осторожностью. Катиониты, обладающие значительной способностью к набуханию, загружать в фильтр, частично заполненный водой. Загруженный в фильтр катионит не должен содержать пылевидных частиц с диаметром менее 0,25 мм. Однако, катионит с содержанием их не свыше 5% допускается к загрузке, но в этом случае пылевидные частицы необходимо при наладке фильтра удалить промывкой током воды вверх. Коэффициент неоднородности зерен катионита должен быть не менее 2.

4. Загрузку катионита производить слоями по 75-100 мм.

5. После укладки каждого слоя взрыхлять его током воды снизу вверх и отмывать от пылевидных частиц до полного осветления промывной воды.

6. Загрузку катионита вести до тех пор, пока поверхность его в фильтре не станет на 70-100 мм ниже проектной отметки.

7. Снова взрыхлить весь слой катионита в течение 20-35 мин. По окончании взрыхления вода в фильтре опускается ниже поверхности катионита и верхний слой (30-35 мм) удаляется из фильтра.

8. Люк фильтра заболтить и приступить к отмывке катионита от кислоты.

Порядок работы катионитных фильтров

1. Работа катионитных фильтров заключается в периодическом осуществлении следующих операций, составляющих полный рабочий цикл фильтра:

Умягчение обрабатываемой воды;
- взрыхление катионита;

Регенерация атионита;
- отмывка катионита.

2. Взрыхление катионита производить перед каждой регенерацией восходящим током осветленной воды. Для этого сначала открыть вентили на трубопроводе подачи воды в фильтр и на воздушнике. Затем медленно открыть вентиль трубопровода взрыхляющей воды. Длительность взрыхления составляет 15-30 мин. при интенсивности 3-5 л/м 2 и контролируется по степени осветленности сливной воды в дренаж. Если по истечении 15 минут после начала взрыхления осветление воды не наступило, то взрыхление воды продолжить. По окончании взрыхления закрыть вентиль на сливном трубопроводе, а затем вентиль на линии подачи исходной воды в фильтр.

3. По окончании взрыхления катионит регенерировать раствором поваренной соли для восстановления обменной способности. Открыть вентиль на трубопроводе регенерационного раствора поваренной соли и вентиль на линии отвода регенерационного раствора. Длительность регенерации катионита составляет 10-15 мин. Во время регенерации следить за тем, чтобы в фильтре был подпор воды, который проверяется с помощью воздушника и манометра.

4. По окончании подачи раствора поваренной соли осуществить отмывку катионита. Закрыть вентиль на трубопроводе поваренной соли. Открыть вентиль в верхнем трубопроводе исходной воды. Отмывку катионита вести до тех пор, пока жесткость сливной воды на выходе из фильтра не будет отвечать норме.

5. Умягчение обрабатываемой воды. При работе фильтра в нем всегда должен быть подпор воды. 2-3 раза в смену при помощи воздушника, проверять наличие подпора и удалять накопившийся воздух. Во время работы фильтра периодически отбирать пробы умягченной воды для анализа. При повышении жесткости умягченной воды до величины, превышающей норму, фильтр отключить на регенерацию, т.е. повторить операции, описанные выше.

Обязательным условием эффективной и долговечной эксплуатация любого оборудования, контактирующего с водной средой, является ее высокое качество. Методы грубой водоочистки не способны полностью устранять вредные примеси. В таких ситуациях необходима организация химводоподготовки или как ее еще называют химводоочистки - применение специальных технологий обработки воды, корректирующих ее химический состав.

Так, с помощью химических методов очистки воды можно устранить вещества, которые способны вызывать коррозию, а, следовательно, и приводить к поломке элементов оборудования и распределительной сети холодного и горячего водоснабжения. В системах теплоснабжения химводоподготовка позволяет защитить все элементы пароконденсаторного тракта, а также очищать теплообменное оборудование. Химические реагенты могут применяться и для ингибирования процессов отложения различных солей как на оборудовании, так и в ионообменных установках.

Некоторые примеры установленных нами систем химводоподготовки

ХВП котельной Санкт-Петербург


ООО "Завод АТИ"


ЗАО "Цитомед"


ХВО для Мариинского театра

Оборудование для систем отопления, кондиционирования, оборотного водоснабжения и котельных стоит достаточно дорого, но для того, чтобы оно прослужило долго, необходима профессиональная химводоподготовка и химводоочистка (улучшение качества воды до соответствия определенным требованиям), сокращенно ХВП или ХВО. После таких мероприятий котельные прослужат на 10-20 лет больше, а расход энергоносителя будет экономичнее на 20-40%.

В результате использования химводоочистки увеличивается производительность, продлевается срок эксплуатации устройств, предотвращаются аварийные ситуации на водопроводе.

Область применения ХВП

Химическая очистка воды являются одним из самых востребованных методов ХВО в промышленности и быту. Так, наиболее часто необходимость в использовании системы химводоподготовки возникает в следующих случаях:

  1. При эксплуатации паровых и водогрейных котлов.
  2. В системах кондиционирования.
  3. В сетях теплоснабжения.
  4. В системах оборотного водоснабжения.
  5. В промышленности, где требуется высокоочищенная водная среда.

Типовые решения ХВП для водогрейных и паровых котельных

Этапы химводоподготовки и реагенты

Суть ХВП - это очистка водной среды от различных веществ химическим способом с применением специальных реагентов, которые либо выполняют главную функцию в химводоочистке и водоподготовке (например, катиониты, коагулянты, флокулянты), либо используются как вспомогательный компонент, повышающий эффективность основного метода (антискаланты для систем обратного осмоса).

Любая система химводоподготовки требует предварительной очистки воды от грубых механических примесей, что позволяет провести дальнейшую химводоочистку более эффективно. Независимо от назначения и цели водоподготовки она должна включать:

  • Снижение уровня жесткости - для этого вида ХВП используются специальные фильтры умягчения воды , принцип действия которых основан на катионных ионообменных смолах;
  • Деминерализация - снижение концентрации различных солей. Наиболее действенными являются обратноосмотические установки , обеспечивающие ультратонкую очистку воды. Однако при больших объемах водопотребления преимущественно используются менее дорогостоящие технологии - ХВО с помощью специальных реагентов или ионообменные смолы;
  • Коррекционная антикоррозийная химводоподготовка - позволяет предотвращать как кислородную, так и углекислотную коррозию в закрытых отопительных системах и контурах охлаждения;
  • ХВО с целью очистки «рабочих» поверхностей от различных отложений (соединений железа, солей жесткости и др.) и повышения скорости их удаления;
  • Угнетение роста микроорганизмов в замкнутых системах, включая оборотное водоснабжение. С этой целью используются химические методы очистки воды с биоцидами - специальными средствами с дезинфицирующими свойствами, которые способны подавлять рост бактерий, растворять биологическую пленку на внутренней поверхности труб и оборудования, ингибировать коррозию;
  • Регенерация катионитов, которые использовались для обезжелезивания и умягчения. Средства для ХВП удаляют с поверхности ионообменных смол ионы солей железа и жесткости, позволяют сэкономить расход солевого регенерационного раствора, увеличить фильтрующую способность и продолжительность фильтроцикла.

Для точного дозирования реагентов для химводоподготовки используются специальные дозирующие насосы и системы, а для хранения приготовленных растворов ХВП - реагентные баки.

Какой способ химводоочистки выбрать?

Выбор системы ХВО довольно таки трудоемкий процесс, требующий специальных знаний и навыков. Кроме того, для правильного подбора необходимых в конкретном случае устройств и технологий химической очистки воды необходимы сведения о ее исходном качестве. Так, при выборе способа и реагента химводоочистки необходимо учитывать рН водной среды (при повышенной щелочности используются специальные реагенты в процессе умягчения), вид солей жесткости и материал, из которого изготовлено оборудование, контактирующее с водной поверхностью (медь, латунь, нержавеющая или углеродистая сталь).

Компания «Русватер» выполняет проектирование систем химводоподготовки и химводоочистки с применением современных технологий и качественных европейских реагентов. Обратившись к нашим специалистам вы сможете пройти все этапы в одной организации: начиная с исследования показателей химического состава воды и, заканчивая, выбором необходимых методов ХВО, подбором устройств и реагентов.

Водогрейные котлы не могут долго работать на обычной водопроводной воде. Без химводоочистки её состав способен быстро вывести оборудование из строя. «ПромСервис» предлагает специальные реагенты и технологии, чтобы этому воспрепятствовать.

Химводоочистка — обязательный процесс для водогрейного оборудования промышленного масштаба. Он предусмотрен техническими требованиями к условиям эксплуатации.

Химводоподготовка в котельной предназначена:

  • для очистки воды от солей и железа;
  • связывания излишнего кислорода, повышающего коррозию;
  • ХВО для котельной служит, чтобы скорректировать щелочность среды;
  • создания защитного слоя, препятствующего разрушению металлического оборудования.

Химводоочистка может иметь 1 или 2 ступени. Один этап смягчения воды достаточен для частных домов и коттеджей. Для максимально возможной минимизации содержания солей необходимы обе стадии очистки воды. Этот процесс может быть постоянным или прерывным.

Химводоподготовка в котельной экономит средства

  1. Нет необходимости выделять деньги на внеочередные ремонты.
  2. Уменьшается количество плановых сервисных осмотров оборудования;
  3. ХВО для котельной, убирая накипь и снижая коррозию, повышает КПД отопительной техники. Это значит, количество входящих ресурсов можно сократить.
  4. Химводоочистка также значительно продлевает общий срок службы техники.

Химводоподготовка в котельной с «ПромСервис»

Наша компания реализует только самые эффективные агрегаты. ХВО и реагенты для котельной позволят использовать оборудование дольше, повышая тем самым общую эффективность системы отопления.

Звоните прямо сейчас. Мы обеспечим эффективную, экономически выгодную очистку воды.

Химводоочистка периодического действия для водогрейных котельных малой мощности

Производительность — 0,8-1,0 м3/ч

SR 20-63М DC SP 61506
485$ 445$

Комплект поставки АКВАФЛОУ SR 20-63M:





ХВО непрерывного действия для водогрейных котельных средней мощности

Производительность — 0,8 м3/ч

SR 20-63M DC SP 61506
910$ 445$

Без НДС. Оплата в рублях по курсу ЦБ РФ без дополнительных процентов. Со склада в Москве. Цены розничные, для постоянных заказчиков — существенные скидки.


2. многоходовой управляющий клапан с автоматической регулировкой по расходу воды;
3. бак-солерастворитель в сборе.

Комплект поставки АКВАФЛОУ DC SP 61506:

1. дозирующий насос с ж/к дисплеем и датчиком уровня;
2. водосчетчик с импульсным выходом;
3. герметичная емкость рабочего раствора с градуировкой.

Водоподготовка для паровых котлов 0,8-1,0 м3/ч (Na-катионные 2 ступени)

Производительность — 0,8 м3/ч

910$ 450$ 410$
SR 020/2-73 SR 20-63 T DC SP 606

Без НДС. Оплата в рублях по курсу ЦБ РФ без дополнительных процентов. Со склада в Москве. Цены розничные, для постоянных заказчиков — существенные скидки.

Комплект поставки АКВАФЛОУ SR 20/2-73:

1. два фильтра в комплекте с катионитом и дренажно-распределительными устройствами;
2. многоходовой управляющий клапан с автоматической регулировкой по расходу воды;
3. бак-солерастворитель в сборе.
1. фильтр в комплекте с катионитом и дренажно-распределительными устройствами;

3. бак-солерастворитель в сборе.
1. дозирующий насос с ж/к дисплеем и датчиком уровня;

Комплект поставки АКВАФЛОУ SR 20-63T:

Комплект поставки АКВАФЛОУ DC SP 606:

Водоподготовка для паровых котлов 1,0 м3/ч (обессоливание обратным осмосом)

Производительность — 0,8 м3/ч

Без НДС. Оплата в рублях по курсу ЦБ РФ без дополнительных процентов. Со склада в Москве. Цены розничные, для постоянных заказчиков — существенные скидки.

Комплект поставки АКВАФЛОУ DC SP 606:

1. дозирующий насос с ж/к дисплеем и датчиком уровня;
2. герметичная емкость рабочего раствора с градуировкой.

Комплект поставки АКВАФЛОУ RO 40-1,0-L-PP:

Рамная конструкция, на которой располагаются следующие технологические блоки:

1. блок тонкой очистки;
2 .насос высокого давления;
3. мембранный блок;
4. блок химической промывки.

Комплект КИПиА (манометры, расходомеры, кондуктометр и датчики давления, шкаф управления с контроллером).

Комплект поставки АКВАФЛОУ SR 20-63 T:

1. фильтр в комплекте с катионитом и дренажно-распределительными устройствами;
2. многоходовой управляющий клапан с автоматической регулировкой по таймеру;
3. бак-солерастворитель в сборе.

ВОДОПОДГОТОВКА И ВОДОХИМИЧЕСКИЙ РЕЖИМ КОТЕЛЬНОЙ

5.1.Водоподготовка имеет большое значение для безопасной и экономичной работы котельных установок. При неудовлетворительной водоподготовке на поверхности нагрева котлов, тепловых сетей и водоподогревателей откладываются твердые отложения, и происходит коррозия поверхности нагрева.

5.2.Водоподготовка подпиточной воды включает в себя умягчение жесткой воды в натри-катионитовых фильтрах и удаление агрессивных газов, кислорода и свободной углекислоты, в вакуумных деаэраторах.

5.3.Вода из городского водопровода мимо или через повысительные насосы холодной воды поступает на охладитель рабочей жидкости. Затем на подогреватель сырой воды (I ступень ХВО) /12/. Нагревается до температуры не выше 40 С и поступает в натрий-катионитовый фильтр /1/. Повышение воды выше 40 С вызывает коксование сульфоугля, что снижает его обменные способности. Умягченная вода после фильтра /1/ поступает на подогреватель химочищенной воды II ступени /13/, где нагревается до температуры 70-80 С, а затем подается на вакуумные деаэраторы /6,7/. Де аэрированная умягченная вода свободно сливается в баки подпиточной воды /10/. Смотри схему №5.

5.4.Натрий-катионитовый фильтр представляет собой вертикальные цилиндрические напорные баки, работающие с давлением выше атмосферного. Нижняя часть фильтра заполнена слоем бетона, на котором расположено нижнее дренажное устройство.

Дренажное устройство предназначено для равномерного распределения поступающей воды по всей площади фильтра. Оно состоит из коллектора с системой дренажных трубок со щелями, щели которых меньше диаметра наименьших зерен сульфоугля /катионита/.

Выше дренажного устройства располагается катионит /сульфоуголь/ высотой 2,2м.

В верхней части фильтра расположено распределительное устройство для воды и солевого раствора. Оно предназначено для равномерного распределения воды и солевого раствора по всей поверхности сульфоугля.

Фильтр имеет два лаза: верхний – для загрузки катионита и для доступа во внутрь фильтра; и нижний – для ревизии нижней дренажной системы.

Катионитовые фильтры обвязаны трубопроводами с арматурой и измерительными приборами – расходомерами, манометрами, термометрами, устройствами для отбора проб воды.

5.5.К вспомогательному оборудованию водоподготовки относится устройство для подготовки раствора соли, необходимого для регенерации фильтра, устройство ""мокрого хранения"" соли /14/, перекачивающие солевые насосы /15/, бак мерник /3/. бак подсоленной воды /8/, солерастворитель /4/.

5.5.1.Установка ""мокрого хранения"" соли представляет собой четыре железобетонных бака-хранилища, рассчитанных на трех-четырех месячную потребность соли.

Сухая соль автотранспортом засыпается в ямы. В верхней части ям имеется коллектор с отверстиями для равномерного размыва соли холодной/1/ или горячей водой /2/подаваемой из котельной. Смотри схему №5.

На дне ямы ""мокрого хранения"" соли имеется всасывающая труба (в коробе со щебнем – для фильтрации солевого раствора), по которой раствор насосом /5/ подается в бак мерник /3/ котельной.

5.5.2.Всасывающие трубы из ям ""мокрого хранения"" соли входят в рядом стоящую насосную, где расположены два насоса /5/ для перекачки солевого раствора и трубопроводы с запорной арматурой обвязывающие солевые ямы. Обвязка солевых ям позволяет перекачать солевой раствор из любой ямы в любую, а так же подавать горячую и холодную воду в ямы, как через размывочный коллектор, так и через заборную трубу.

5.5.3.Из ямы ""мокрого хранения"" соли солевой раствор перекачивающими насосами подается в бак мерник. В баке мернике насыщенный раствор разбавляется до 7-10% концентрации и подается в регенерируемый фильтр солевым насосом /15/.

5.5.4.Солевой раствор для регенерации фильтра может быть приготовлен и в проточном солерастворителе /4/. Соль ""сухого хранения"" засыпается в солерастворитель и пропускают через него холодную воду. Полученный солевой раствор может быть подан как непосредственно в фильтр, так и на бак мерник. Этот способ приготовления солевого раствора применяется при выходе из строя перекачивающих насосов /5/ или солевого насоса /15/.

5.6.Цикл работы фильтра состоит из операций взрыхления, регенерации, контакта, отмывки, умягчения.

5.6.1.Цель взрыхления – устранить уплотнения слежавшейся массы катионита, для обеспечения более свободного доступа регенерационного раствора к зернам катионита. Взрыхление производится отмывочной водой подаваемый насосом взрыхления /9/ из бака подсоленной воды /8/. В случае отсутствия отмывочной воды, взрыхление производится холодной водой.

При взрыхлении сначала открывается задвижка на линии подвода взрыхляющей воды, а затем задвижку на линии сброса воды в верхней части фильтра в канализацию. Взрыхление должно производится до тех пор, пока вода, отходящая от фильтра вода, не станет прозрачной. При взрыхлении не допускается полное опорожнение промывочного бака, во избежание засоса воздуха в фильтр.

5.6.2.Регенерация катионита в фильтре производится раствором соли, приготовленным в баке мернике. Раствор соли 7-10% концентрации подается солевым насосом в фильтр, он проходит сверху вниз сквозь слой катионита и выходит в канализацию. При помощи дренажной задвижки на фильтре устанавливаем скорость подачи раствора 3-4м3/час. В процессе регенерации необходимо следить, чтобы в фильтре был все время подпор жидкости. После пропуска раствора соли, закрывается дренаж, фильтр ставится на контакт.

5.6.3.Контакт катионита с раствором соли длится 5-10 минут. Он необходим для дополнительного обменного процесса между катионами натрия и солями жесткости. При увеличении времени контакта свыше 15 минут эффект регенерации возрастает незначительно.

5.6.4.После окончания контакта производится отмывка сульфоугля от регенерационного раствора и продуктов регенерации. Для отмывки фильтра холодную воду пропускаем сквозь катионит сверху вниз 25-45 минут. Сбрасываем воду в канализацию. Сброс производится до тех пор, пока отмывочная вода станет соленой на вкус. Тогда фильтр переключается на отмывку в промывочный бак. Отмывка в бак заканчивается тогда, когда отмывочная вода становится прозрачной и ее общая жесткость не превышает 200мкг.экв/кг, а концентрация хлоридов превышает их содержание в исходной воде не более чем на 30мг/л.

Если бак отмывочной воды заполнится раньше, чем отмоется фильтр, отмывка продолжается в канализацию.

Катионитовый фильтр, поставленный после регенерации в резерв, в избежания пептизации катионита отмывается от регенерационного раствора только частично. В этом случае отмывка в бак не ведется, и фильтр оставляется в резерве со слабым регенерационным раствором. Окончание отмывки и отмывка на бак производится непосредственно перед включением фильтра в работу.

5.6.5.Закончив отмывку, фильтр включается в работу. Умягченная вода поступает через задвижку на входе в верхнее распределительное устройство, проходит через фильтр, через катионит и далее через дренажную систему, через задвижку на выходе отводится на подогреватель II ступени ХВО /13/.

При включении фильтра в работу необходимо еще раз произвести химический контроль выходящей воды, которая должна отвечать следующим показателям: жесткость не более 200мкг.экв/л.; хлориды – 30мг/л больше, чем их содержание в исходной воде.

Во время умягчения следует периодически /один-два раза в смену/, открывать воздушный вентиль для выпуска скопившегося в фильтре воздуха.

По достижении остаточной жесткости в умягченной воде 200мкг.экв/л. фильтр отключают и повторяют цикл операций.

5.6.6.Для подготовки питательной воды паровых котлов ДЕ-10-14ГМ применяется двухступенчатое умягчение. При двухступенчатом умягчении: исходную воду вначале умягчают в основных катионитовых фильтрах (фильтры I ступени) /1/ до остаточной жесткости 1000мкг.экв/л., а затем доумягчают в катионитовых фильтрах II ступени /2/ до конечной жесткости 20мкг.экв/л.

5.7.Химически очищенная вода после натрий-катионитовых фильтров I ступени /1/ поступает на подогреватель ХВО II ступени /13/, где нагревается до температуры 70-80 С. На вход подогревателя ХВО II ступени поступает еще и подпиточная вода после подпиточных насосов /11,17/ на повторную деаэрацию. Ее количество регулируется в ручную.

5.7.1.Греюшая вода поступает сразу на подогреватель ХВО II ступени, а затем последовательно на подогреватель I ступени и на регулятор ""Температуры ХВО"". В случае работы без подогревателя ХВО I ступени, теплоноситель после подогревателя II ступени ХВО поступает на регулятор ""Температуры ХВО"" через байпас.

5.7.2.Регулятор ""Температуры ХВО"" регулирует температуру на выходе воды с теплообменника ХВО II ступени. Температуру на выходе воды с подогревателя ХВО I ступени, регулируется в ручную. В случае ее повышения до 38 С в операторской срабатывает звуковая и световая сигнализация.

5.7.3.Греющая и нагреваемая вода на подогревателе ХВО II ступени подключены противотоком, а на подогревателе ХВО I ступени – прямотоком.

5.7.4.Для аварийной подпитки тепловых сетей напрямую, минуя деаэрацию необходимо:

Закрыть задвижку на входе в подогреватель ХВО II ступени

Открыть перемычку между трубопроводами (выход натрий-катионитовых фильтров и нагнетательный коллектор подпиточных насосов /11,17/).

Эта линия подпитывает тепловые сети химически очищенной водой давлением исходной воды, без подпиточных насосов (пуск после остановки со сливом воды, выход из строя подпиточного насоса).

5.8.После подогревателя ХВО II ступени химически очищенная вода поступает на вакуумную деаэрационную установку подпитки. Она включает в себя вакуумные деаэрационные колонки производительностью 25 т/час /7/, 50 т/час/6, охладитель выпара колонки /16/, бак деаэрированной воды /10/, эжектора – общие с колонками ГВС. Смотри схему №15. Одна из деаэраторных колонок подпитки находится в работе, а другая в резерве, в зависимости от нагрузки на узел ХВО.

5.9.Режимная карта натрий-катионитовых фильтров I и II ступеней котельной по ул. Товарищеская

№ пп Показатели Ед. изм. Значение
Фильтры I ступени.
Диаметр фильтра мм
Катионит Сульфоуголь
Высота загрузки мм
Площадь фильтра м2 3,14
Объем катионита м3 6,9
Рабочая обменная способность гр-экв/м3
Умягчение
мкг-экв/ кг 1000-200
мкг-экв/ кг 1500-200
9 Среднее количество воды за фильтроцикл Ер. * Gк. G ум.= Жисх. - Жум. м3
Взрыхление
Время взрыхления мин 20-30
Регенерация
кг
кг
Процент содержания соли в растворе %
м3 4,14
Скорость пропуска раствора соли м3/ч 3-5
Время пропуска солевого раствора мин.
Время контакта мин.
Фильтры II ступени.
Диаметр фильтра мм
Катионит Сульфоуголь
Высота загрузки мм
Площадь фильтра м2 0,23
Объем катионита м3 0,23
Рабочая обменная способность г-экв/м3
Жесткость воды при включении в работу мкг-экв/кг 15-20
Жесткость при срабатывании фильтра мкг-экв/кг 15-20
Среднее количество воды за фильтроцикл м3
Взрыхление
Время взрыхления мин. 10-15
Регенерация
Удельный расход соли на 1м3 сульфоугля кг
Расход технической соли на регенерацию кг
Процент соли в растворе %
Расход раствора соли на регенерацию м3 0,138
Скорость пропуска соли м3/час 3-5
Время контакта мин. 10-15
Экспликация оборудования ХВО
№ пп Наименование оборудования Характеристика оборудования Кол-во
Натрий катионитовый фильтрI D=2000мм
2 Натрий катионитовый фильтрII D=1000мм
Бак-мерник раствора соли V=3 м3
Солерастворитель С-0.2-0.5 D=1000мм
Насос перекачки раствора соли К-20-30 G=20м3/ч, Н=30м.в.ст, n=2900об/мин,N=4кВт
Вакуумный деаэратор ВД-50 G=50м3/час
Вакуумный деаэратор ВД-25 G=25м3/час
Бак промывки фильтров ОСТ-34-42-395-77 V=30 м3
Насос промывки фильтра К-45-30 G=45м3/ч, Н=30м.в.ст, n=2900об/мин,N=5кВт
Бак подпиточной воды БП-200 V=200 м3
Насос подпиточной воды К-90-35 G=90м3/ч, Н=35м.в.ст, n=2900об/м, N=15кВт
Подогреватель холодной воды 3-12-ОСТ.34-588-68 Q=1,1Гкал/ч,tmax=40СGт/н=10т/ч,F=30м2.
Подогреватель хим.очищенной воды 3-13-ОСТ.34-588-68 Q=2,2Гкал/ч,tmax=81С Gт/н=50т/ч,F=60м2
Солевая яма
Насос раствора соли 8/15ДСУ4 G=8м3/ч, Н=15м.вюст, n=2900об/м,N=3кВт
Охладитель выпари ОВВ-8 F=8м2
Насос подпиточной воды К-20-50 G=20м3/ч, Н=50м.в.ст, n=2900об/м, N=15кВт

Водоподготовка (ХВО) на котельной необходима для защиты оборудования от коррозии, накипи и отложений. Отсутствие ХВО или его неэффективная работа приводит к перерасходу топлива и выходу оборудования котельной и теплосети из строя. Остановка котельной представляет социальную опасность, т.к. при этом прекращается отопление и ГВС. К тому же имеет место экономический фактор - капитальные затраты на замену котлов и пр.

ХВО не просто должна присутствовать на котельной, но и должна соответствовать своей задаче (проекту, ТЗ, объему подпитки, режиму работы котельной, качеству и количеству исходной воды, качеству подпиточной воды), эффективно и стабильно работать.

За последние 10 лет на водогрейных котельных широкое распространение получили автоматические системы умягчения воды непрерывного действия серии KWS TA с управляющими механизмами Fleck 9000 и 9500. Конструктивно эти установки включают в себя:

  • Два полимерных корпуса диаметром от 200 до 610 мм
  • Верхние и нижние распределительные устройства из ПВХ
  • Катионит Room&Haas от 20 до 280 л на один корпус
  • Кварцевый гравий для поддерживающего слоя
  • Управляющий механизм с расходомером и адаптерами для подключения к трубопроводам и дренажу
  • Бак солерастворитель вместимостью до 300 кг соли
  • Автоматическая система умягчения воды непрерывного действия серии KWS TA

Преимущества автоматических фильтров KWS TA:

В качестве недостатков этих установок можно привести следующее:

  • Привередливы к качеству соли. Желательно использовать таблетированную соль. Но это может быть и преимуществом: нет солевого хозяйства, в диспетчерезированных котельных можно загружать полный солевой бак раз в неделю, 120кг/17кг=7дней

Особенности проектирования и эксплуатации установок ХВО

KWS TAВ процессе разработки множества комплексов водоподготовки специалисты нашей компании выявили ряд важных моментов, которые необходимо учитывать при создании водоочистных систем.

Соответствие проектируемых комплексов ХВО объемам теплосети, режимы работы котельных и объемы подпитки, время и периодичность регенерации систем водоподготовки, необходимость механической очистки исходной воды, диапазон изменения давления воды на входе, количество растворенного железа в воде.

Мы приводим в нашей статье основные рекомендации, касающиеся подбора оборудования водоподготовки на стадии проектирования ХВО и для последующей эксплуатации систем очистки воды на котельных. Наши рекомендации даны применительно рассмотренных выше автоматических систем умягчения воды непрерывного действия серии KWS TA с управляющими механизмами Fleck 9000 и 9500.