Подвижность растворной смеси - это её способность растекаться под действием собственной массы или приложенных к ней внешних сил (ГОСТ 5802- 86). Она характеризуется глубиной погружения стандартного конуса за определенный период.

Схема прибора для определения подвижности приведена на рис. 13; используется стальной стержень диаметром 12 мм, длиной 300 мм.

Эталонный конус прибора изготавливают из листовой стали или из пластмассы со стальным наконечником. Параметры эталонного конуса; масса со штангой - 300 ±2 г; высота - 145 мм; диаметр основания - 75 мм; угол при вершине - 30° ±30".

Для растворной смеси используется сосуд емкостью 3 л, диаметр его нижнего основания - 150 мм, диаметр верхнего основания - 250 мм, высота - 180 мм.

Прибор размещают на горизонтальной поверхности и проверяют скольжение штанги 6 в направляющих 5.

Растворной смесью заполняют сосуд 2, установленный на штативе. При этом уровень смеси должен быть на 10 мм ниже краев сосуда. Затем производят уплотнение растворной смеси штыкованием стальным стержнем 25 раз с последующим кратным легким постукиванием сосуда о стол. Подготовленная указанным способом растворная смесь готова к проведению испытаний.

Острие стандартного конуса 3 приводят в соприкосновение с поверхностно растворной смеси, находящейся в сосуде, закрепляют штангу стандартного конуса стопорным винтом 4 и производят первый отсчет по шкале. Затем отпускают стопорный винт. Через 1 мин после свободною погружения стаи дартного конуса делают второй отсчет по шкале с погрешностью до 1 мм.

Подвижность растворной смеси оценивается в сантиметрах как разноси, между первым и вторым отсчетом.

За результат принимают среднее арифметическое результатов двух йены таний на разных пробах растворной смеси одного замеса.

Расслаиваемость растворной смеси определяют (ГОСТ 5802-86), сопоставляя содержания массы заполнителя в нижней и верхней частях свежеотформованного уплотненного образца. Последовательность определения такова. В металлические формы с размерами 150х150x150 мм укладывают растворную смесь, затем заполненные формы устанавливают на лабораторную виброплощадку типа 435А и смесь подвергают вибрации в течение 1 мин. После завершения вибрирования из формы отбирают верхний слой растворной смеси высотой 7,5 ±0,5 мм и помещают его в противень, а нижний слой путем опрокидывания формы выгружают во второй противень. Верхний и нижний слои взвешивают с погрешностью до 2 г и осуществляют мокрый рассев на сите с диаметром отверстия 0,14 мм. Промывают струей чистой воды до полного удаления вяжущего (из сита вытекает чистая вода). Отмытый заполнитель верхней и нижней частей помещают на чистый противень, сушат при температуре 105-110 °С до постоянной массы и взвешивают с погрешностью до 2 г.


За результат испытания принимают среднее арифметическое результатов двух определений, отличающихся между собой не более чем на 20 % от меньшего значения.

Водоудерживающая способность оценивается по потере массы слоя растворной смеси толщиной 12 мм, уложенного на 10 листов промокательной бумаги (ГОСТ 5802-86). Схема прибора представлена на рис. 14.

Порядок испытания следующий . Взвешивают 10 листов промокательной бумаги размером 150х150 мм с погрешностью до 0,1 г, затем их укладывают на стекляную пластинку размером 150x150 мм, помещают сверху прокладку из марлевой ткани и сверху устанавливают металлическое кольцо с внутреиним диаметром 100 мм, высотой 12 мм и толщиной стенки 5 мм и снова взвешивают.

Растворную смесь, предварительно тщательно перемешанную, укладывают в металлическое кольцо вровень с краями и взвешивают. Через 10 мин кольцо с раствором и марлей осторожно снимают. Промокательную бумагу взвешивают с погрешностью до 0,1 г.

За результат испытаний принимают среднее арифметическое результатов двух определений, отличающихся между собой не более чем на 20 % от меньшего значения.

Плотность растворной смеси характеризуется отношением массы уплотненной растворной смеси к её объему. Определение плотности (ГОСТ 5802-86) проводят в такой последовательности. Предварительно взвешивают металлический сосуд объемом 1000 мл и заполняют его с избытком растворной смесью. Затем смесь уплотняют штыкованием стальным стержнем 25 раз и 5-6-кратным легким постукиванием о стол.

Избыток растворной смеси после уплотнения удаляют и поверхность с помощью металлической линейки выравнивают по уровню краев сосуда. Наружные стенки сосуда очищают от попавшего на них раствора. После этого сосуд с растворной смесью взвешивают с погрешностью до 2 г. Плотность уплотненной растворной смеси, кг/м3, вычисляют по формуле


За результат испытаний принимают среднее арифметическое результатов двух испытаний, отличающихся не более чем на 5 % от меньшего значения.

Сроки схватывания (ГОСТ 310.3-76) определяют с помощью прибора Вика. После затворения водой растворная смесь, утрачивая пластичность и подвижность, постепенно густеет, что соответствует началу схватывания, а иием превращается в камневидное тело - наступает конец схватывания.

Начало и конец схватывания растворной смеси определяют в следующем порядке. Свежеприготовленную растворную смесь укладывают в кольцо прибора Вика с размерами: нижний диаметр - 75 мм, верхний диаметр - 65 мм, высота - 40 мм. В стержень прибора устанавливают иглу диаметром 1,1 мм и иннной 50 мм.

Иглу прибора доводят до соприкосновения с поверхностью растворной смеси, и в этом положении закрепляют стержень зажимным винтом. Затем освобождают стержень, после чего игла свободно погружается в тесто. Иглу погружают в растворную смесь каждые 10 мин. После каждого погружения шла не должна попадать в прежнее место.

Начало схватывания характеризуется временем, прошедшим от начала затворения до того момента, когда игла не доходит до пластинки на 1-2 мм.

Конец схватывания оценивается временем от начала затворения до момента, когда игла опускается в растворную смесь не более чем на 1-2 мм.

Пригодность смеси следует проверить перед применением. Чашу вместимостью 200 см3, заполненную свежеприготовленной тщательно перемешанной растворной смесью, помещают в плотно закрывающуюся емкость и издерживают при температуре 20 ± 2 °С в течение времени, указанного в нормативном документе. После этого чашу с растворной смесью извлекают из емкости. Пригодная растворная смесь должна легко наноситься шпателем, не сворачиваясь под ним.

Стекание шпаклевки с вертикальной поверхности. Растворную смесь слоем 2-3 мм наносят на бетонную пластинку, устанавливают ее в вертикальное положение и выдерживают при температуре 20 ± 2 °С в течение 30 мин. Растворная смесь не должна стекать с вертикальной поверхности.

Условная вязкость растворных смесей (ГОСТ 8420-74) определяется на пискозиметре ВЗ-246 с диаметром сопла 4 мм вместимостью 100 ± 1 см3. Оптимальный диапазон времени истечения составляет от 20 до 200 с. Испытание проводят при температуре 20 ± 2 °С в такой последовательности. Вискозиметр с помощью уровня устанавливают в вертикальное положение, под сопло помещают сосуд емкостью 150 см3. Отверстие сопла вискозиметра закрывают пальцем, исследуемый материал медленно, для предотвращения образования пузырей, с избытком наливают в вискозиметр. Избыток материала удаляют при помощи стеклянной пластинки. Затем открывают отверстие сопла и одновременно с появлением материала из сопла включают секундомер, останавливая его в момент первого прерывания струи испытуемого материала. Отсчитывают время истечения.

За результат испытания принимают среднее арифметическое результатов не менее трех измерений. Допускаемые отклонения отдельных определений времени истечения от среднеарифметического значения не должны превышать ±5 %.

Жизнеспособность растворной смеси (ГОСТ 19270-73) характеризуется изменением подвижности смеси в течение заданного времени. Для ее определения каплю смеси переносят стеклянной палочкой на горизонтальную поверхность стеклянной пластины с размерами 300*250 мм. Пластину устанавливают в вертикальное положение и закрепляют. Затем замеряют металлической линейкой длину потека в сантиметрах. Пластинку со смесью помещают в эксикатор и хранят в течение времени, указанного в нормативном документе. После чего пластинку извлекают из эксикатора и производят измерение длины потека.

Укрывистость характеризует способность материала при нанесении на черно-белую подложку уменьшать контрастность до исчезновения различия между черной и белой поверхностями (ГОСТ 8784-75). Черно-белая подложка представляет собой квадраты, нанесенные черной тушью на чертежную белую бумагу в шахматном порядке. На листе бумаги 90x120 мм получают 12 черных и белых квадратов размером 30x30 мм. На указанную подложку кладут стеклянную пластину 90х 120 мм, предварительно взвешенную, а затем на пластину наносят краску слоями до тех пор, пока различие между черными и белыми квадратами полностью исчезнет. После полного укрытия окрашенную стеклянную пластинку взвешивают с погрешностью до 0,02 г.

Укрывистость, г/м2, вычисляют по формуле

За результат испытания принимают среднее арифметическое результатов двух определений.

Время высыхания краски до степени 3 (ГОСТ 19007-73). Степень высыхания характеризует состояние поверхности материала, нанесенного на пластину, при определенных времени и температуре сушки. Время высыхания - промежуток времени, в течение которого достигается заданная степень высыхания материала при определенной его толщине и условиях сушки. Для определения времени высыхания до степени 3 растворную смесь наносят на пластинки из бетона с размерами 50x50x25 мм. Поверхность пластинки обильно увлажняют водой. После исчезновения «водяного зеркала» растворную смесь наносят на поверхность пластинок кистью или валиком. Толщина слоя составляет 140-150 мкм. Температура испытания 20 ±2 °С, относительная влажность воздуха 65 + 5 %. Время высыхания указывается в нормативной документации. При испытании на окрашенную пластинку помещают пинцетом листок бумаги. На него накладывают резиновую пластинку, на середину которой устанавливают гирю массой 200 г. Оценку степени нмсыхания проводят через 30 с после снятия нагрузки.

Если бумага не прилипает к поверхности высохшего материала, фиксируется степень высыхания 3.

Открытое время выдержки клея определяют по времени, в течение которого можно приклеить плитку на уже нанесенный слой клея.

Поверхность бетонной плиты обильно смачивают водой. После исчезновения «водяного зеркала» на поверхность плиты наносят клей и разравнивания его шпателем, толщина слоя должна быть не менее 0,5 мм. На слой клея укладывают керамические плитки с интервалом 5 мин. Сразу же после укладки каждую плитку нагружают грузом массой 3 кг на 30 с. Через 40 мин все плитки снимают с бетонной плиты и переворачивают приклеиваемой стропой вверх. Степень заполнения клеем приклеиваемой поверхности плитки определяется в процентах. Открытым временем выдержки клея считается время в минутах, при котором 50 % клея или более остается на плитке.

Устойчивость плитки к смещению определяют по смещению плитки через 30 мин после снятия с нее нагрузки. Растворную смесь с помощью шпателя наносят на горизонтально расположенную бетонную плитку (основу) диаметром 200*350*5 мм слоем, указанным в нормативной документации. Через 10 мин на бетонную плитку с растворной смесью наклеивают две керамические плитки с размерами 150*150*5 мм, на середину которых помещают на 30 с гири массой 5 кг и четко отмечают положение керамических плиток относительно основы. Через 30 с гири убирают и бетонную плитку с поразцами устанавливают в вертикальное положение. По истечении 30 мин измеряют расстояние, на которое смещаются плитки.

За результат испытания принимают среднее арифметическое результатов двух испытаний с погрешностью до ±0,25 мм.

Растекаемость определяют по диаметру расплыва растворной смеси. Металлический цилиндр диаметром 50,8 мм, высотой 45 мм и толщиной стенки мм, помещённый в центр стеклянной пластинки с размерами 250*350*5 мм, выполняют растворной смесью, излишки которой срезают линейкой. Цилиндр и стекло предварительно протирают тканью. Через 45 с цилиндр очень быстро поднимают вертикально на 15-20 см и отводят в сторону.

Диаметр расплыва измеряют через 2 мин после поднятия цилиндра липецкой в двух перпендикулярных направлениях с погрешностью не более 5 мм н иычисляют среднее арифметическое результатов двух измерений.

Допустимое время коррекции положения плитки - это время, в течение мморого возможно изменение положения плитки, наклеенной на бетонное оиюнание. Для его определения на бетонную плиту наносят слой клея толщиной не менее 0,5 мм. На этот слой укладывают пять плиток. Гири массой 1 кг устанавливают на уложенные плитки и выдерживают их в течение 30 с. После 10 мин, а потом с интервалом 5 мин проводят коррекцию очередной плитки путем поворота её на 90° и обратно в исходное положение. Подготовленные образцы оставляют затвердевать в течение 28 сут при температуре 20 ± 2 °С. Через 28 сут определяют усилие отрыва плитки от бетонного основания.

Прочность сцепления плитки с бетонным основанием, составляющая не менее 0,5 МПа, соответствует допустимому времени коррекции, которое указывается в нормативной документации.

К атегория: Выбор стройматериалов

Свойства растворов и растворных смесей

Для успешного применения в той или иной области растворы должны обладать определенными, требуемыми свойствами: плотностью, прочностью, морозостойкостью, водонепроницаемостью, изменением объема при твердении и в отдельных случаях химической стойкостью. Растворы с необходимыми свойствами получают путем подбора состава растворной смеси. При этом учитывают необходимость придания определенных свойств самой растворной смеси, диктуемых технологией производства работ. Основные свойства растворной смеси - подвижность, водоудержи- вающая способность и нерасслаиваемость.

Свойства растворов. По плотности растворы подразделяют на тяжелые и легкие. К тяжелым относят растворы со средней плотностью 1500 кг/м3 и более. Их приготовляют на плотных заполнителях с насыпной плотностью более 1200 кг/м3. Легкие растворы приготовляют на пористых заполнителях с насыпной плотностью менее 1200 кг/м3; средняя плотность таких растворов менее 1500 кг/м3.

У тяжелых растворов, как правило, большая прочность, легкие же растворы обладают меньшей теплопроводностью в связи с наличием воздушных пор. Зато они менее морозостойки, поэтому их применяют чаще для оштукатуривания помещений или устройства подготовки под полы.

Прочность растворов характеризуется маркой. Марка раствора определяется пределом прочности при сжатии стандартных образцов-кубов, которые изготовляют из рабочей растворной смеси и испытывают после 28-суточного твердения при температуре 25 °С в соответствии с ГОСТ 5802-78. По прочности при сжатии (кг/см2) для растворов установлены марки 4, 10, 25, 50, 75, 100, 150, 200 и 300. Растворы марок 4 и 10 изготовляют преимущественно на извести и местных вяжущих. Прочность растворов при растяжении в 5. . .10 раз меньше их прочности при сжатии.

На прочность растворов влияют: активность вяжущего вещества, качество заполнителей, количество воды, условия приготовления и твердения, время твердения.

Вяжущее вещество, находящееся в растворной смеси в виде вяжущего теста, твердеет, образуя плотный камень, соединяющий частицы заполнителя. Поэтому прочность раствора будет определяться как прочностью затвердевшего теста вяжущего, так и прочностью его сцепления с заполнителем.

Прочность затвердевшего вяжущего зависит от его активности (марки) и соответствия условий твердения раствора оптимальным условиям твердения вяжущего. Так, для успешного твердения цементных растворов необходимо поддерживать влажность раствора длительное время - до нескольких недель, так как рост его прочности происходит постепенно, однако скорость нарастания прочности со временем падает (рис. 1). Гипсовые растворы твердеют быстро и требуют сухих условий твердения. Известковые растворы твердеют медленно, требуют сухих условий твердения и имеют невысокую прочность.

Большинство растворов, используемых в отделочных работах, должны иметь относительно невысокую марку 25…50, в то время как минимальная марка цемента - 300. Поэтому, чтобы уменьшить расход цемента и снизить стоимость раствора, сохранив необходимые свойства растворной смеси, применяют два вяжущих: цемент и известь (или глину).

Рис. 1. График нарастания прочности при сжатии цементного раствора, твердеющего в нормальных условиях

Прочность раствора в значительной степени зависит от прочности заполнителя. Так, прочность раствора с заполнителем из прочных горных пород может быть на 25…50% выше, чем при использовании заполнителей с низкой прочностью (шлак и другие пористые заполнители).

Неправильная форма и шероховатая поверхность заполнителя обеспечивают лучшее сцепление его с твердеющим вяжущим. Растворы на таких заполнителях при прочих равных условиях имеют более высокую прочность, чем при заполнителях с округлой формой и окатанной поверхностью зерен.
Присутствие в заполнителе посторонних примесей (например, глины), как правило, уменьшает сцепление заполнителей с вяжущим и снижает прочность раствора. В некоторых случаях примеси вызывают изменение объема зат- вер девшего раствора. Так, набухание частиц глины при смачивании их водой приводит к образованию трещин в растворе. Примеси сульфатов натрия или кальция в заполнителе разрушают цементный камень.

На прочность и другие свойства раствора влияет также количество воды затворения. Его принято характеризовать водовяжущим отношением, т. е. числом, которое получается при делении массы воды затворения на массу вяжущих материалов. В зависимости от вида вяжущего материала различают водоцементное, водоизвестковое отношение и т. д.

Установлено, что с увеличением водовяжущего отношения выше определенного предела прочность раствора уменьшается. Однако при приготовлении строительных растворов воды берут больше, чем это требуется для обеспечения химической реакции затвердения вяжущего вещества.

Обычно водовяжущее отношение близко к 0,5, хотя для полной гидратации цемента достаточно, чтобы водоцементное отношение было около 0,2.

Необходимость увеличения количества воды в растворной смеси вызывается следующим: работать с растворной смесью, содержащей малое количество воды, очень трудно, так как она очень жесткая; избыток воды в растворной смеси должен компенсировать ее потери от испарения с наружной поверхности и от поглощения воды материалов основания, на которое наносится раствор.

Для того чтобы раствор был прочным, все его составляющие должны быть хорошо перемешаны, а смесь - однородной. Технические условия устанавливают минимальный срок перемешивания растворной смеси в растворосмесителе. На прочность раствора влияют и условия твердения. Понижение температуры замедляет реакцию твердения вяжущего вещества, а замораживание раствора на ранней стадии твердения приводит к резкому снижению его прочности из-за нарушения структуры твердеющего вяжущего, не набравшего еще достаточной прочности. Быстрое испарение воды при сушке раствора нагревательными приборами или в условиях жаркого климата может привести к тому, что в поверхностном слое ее окажется недостаточно для гидратации вяжущего и такой раствор будет осыпаться. Чтобы этого не произошло, поверхность раствора необходимо смачивать.

Водонепроницаемость раствора имеет большое значение в таких конструкциях, как наружная штукатурка зданий, штукатурка или подстилающий слой под облицовку керамической плиткой в ванной комнате, специальные гидроизоляционные штукатурки промышленных сооружений. Абсолютно водонепроницаемых растворов нет и принято считать водонепроницаемым раствор, пропускающий гакое количество воды, которое полностью испаряется с его поверхности, не оставляя мокрых пятен. Менее всего пропу- j екают воду плотные растворы, т. е. с большой средней плотностью.

Водонепроницаемость можно повысить, добавляя в раствор при его приготовлении гидрофобизирующие (церезит, битум, синтетические смолы) или уплотняющие (жидкое стекло) добавки.

Морозостойкость раствора в большей степени зависит. от его плотности и водонепроницаемости. Чем они больше, тем более морозостоек раствор. Требованиям морозостойкости должны удовлетворять растворы для наружных штукатурок и подстилающих слоев при наружной облицовке. Для строительных растворов установлены марки по морозостойкости Мрз 10…300.

Твердение большинства вяжущих сопровождается изменением объема. Так, гипсовые вяжущие увеличивают, свой объем, известковые вяжущие и большинство цементов- уменьшают. Исключение составляют специальные расширяющиеся и безусадочные цементы.

Уменьшение объема раствора, вызванное изменением объема твердеющего вяжущего, называют усадкой раствора. Усадка помимо вида вяжущего материала зависит от соотношения количества вяжущего и заполнителя, водовяжушего отношения и от времени и условий твердения раствора.

Усадка раствора увеличивается с увеличением количества вяжущего материала, приходящегося на единицу объема раствора, а также с увеличением водовяжущего отношения. Особенно быстро деформации усадки нарастают в начальной стадии твердения раствора, затем их рост постепенно уменьшается и затухает. У цементных растворов усадка практически прекращается через 90…100 дн. Абсолютная усадка колеблется в значительных пределах: для обычных растворов она составляет 0,1…0,4 мм/м; в предельных случаях она может достигать нескольких миллиметров на 1 м длины.

В штукатурных, облицовочных и мозаичны;; работах усадка - нежелательное явление, так как деформации усадки вызывают напряжения между слоем раствора и основанием или облицовкой, что может привести к появлению трещин и разрушению раствора. Чтобы усадку уменьшить, растворы приготовляют с минимально необходимым количеством вяжущего материала, применяют также различные добавки.

Свойства растворных смесей. Подвижность растворной смеси характеризует ее способность растекаться под действием собственного веса или приложенных к ней внешних сил.

Рис. 2. Прибор для определения подвижности растворной (а) и мозаичной (б) смесей: 1 - сосуд для раствора, 2 - эталонный конус, 3 - пусковой винт, 4 - шкала, 5 - скользящий стержень, 6 - держатели, 7 - штатив, 8 - усеченный металлический конус, 9 - ручки, 10 - лапки

Для определения подвижности растворной смеси применяют прибор (рис. 2, а), состоящий из штатива с прикрепленными к нему держателями, в которых может скользить стержень. К нижнему концу стержня прикреплен эталонный конус высотой 180 мм и диаметром основания 150 мм, массой (300+2) г. Для испытания раствор перемешивают, наполняют им сосуд примерно на 1 см ниже его краев. Раствор уплотняют, штыкуя 25 раз стальным стержнем диаметром 10…12 мм, и встряхивают сосуд 5…6 раз легким постукиванием о стол. Прибор устанавливают на горизонтальную поверхность (стол) и проверяют свободу скольжения стержня конуса в держателях. Стержень с конусом поднимают в верхнее положение, закрепляют его пусковым винтом и устанавливают на штатив сосуд с раствором. Опустив пусковой винт, доводят острие конуса соприкосновения с раствором, закрепляют стержень винтом и записывают отсчет по шкале. Затем отпускают винт, предоставляя конусу возможность свободно погружаться в раствор, и по окончании погружения конуса записывают второй отсчет по шкале. Разность в сантиметрах между вторым и первым отсчетами дает глубину погружения конуса.

Подвижность мозаичной и бетонной смесей определяют с помощью формы-конуса (рис. 2, б) высотой 300 мм, внуттренними диаметрами нижним - 200 мм, верхним - 100 мм. Форма-конус загружается испытуемой смесью и уплотняется штыкованием (ГОСТ 10181.1-81). После этого форму-конус снимают и измеряют разность между высотой формы-конуса и мозаичной или бетонной смеси. Значение этой величины (см) служит показателем подвижности.

Подвижность смеси зависит от ее состава: в первую очередь от количества воды и вяжущего, а также от вида вяжущего и соотношения между вяжущим и заполнителем. При прочих равных условиях жирные растворные смеси подвижнее тощих. Известь и глина дают более подвижные смеси, чем цементы.
Вид вяжущего материала и состав раствора обычно задаются в зависимости от требуемой прочности раствора и условий эксплуатации соответствующих поверхностей здания или помещения. Подвижность растворной смеси регулируют, уменьшая или увеличивая количество вяжущего и воды затворения. Увеличивая в растворной смеси количество воды и вяжущего, получают более пластичные, удобоукладываемые растворные смеси, но при этом увеличивается усадка раствора.

При добавлении в растворную смесь воды и неизменном количестве вяжущего подвижность смеси увеличивается, но понижается прочность раствора, возрастает его пористость. Поэтому при увеличении количества воды следует пропорционально увеличивать расход вяжущего.

В некоторых случаях не целесообразно увеличивать расход дорогостоящего, например цементного, вяжущего, а можно улучшить подвижность смеси добавляя более дешевое вяжущее, например известь или глину. В этом случае второе вяжущее будет играть роль неорганической пластифицирующей добавки. В тех цементных растворах, где добавка извести и глины не допускается, применяют органические пластификаторы - поверхностно-активные вещества, например сульфитно дрожжевую бражку (СДБ).

Водоудерживающая способность характеризует способность растворной смеси удерживать воду. Это свойство имеет большое значение при нанесении растворной смеси на пористые основания, а также при ее транспортировании. Если растворную смесь с малой водоудерживающей способностью нанести, например, на кирпичную или шлакобетонную кладку, то она быстро обезводится. Это произойдет потому, что мелкие поры основания обладают способностью засасывать в себя воду и вместе с ней частицы вяжущего. Раствор в этом случае получается менее плотным и значительно менее прочным. Чтобы компенсировать потерю воды, нанесенный раствор приходится периодически увлажнять в течение нескольких дней.

Водоудерживающую способность растворной смеси принято характеризовать изменением подвижности раствора после отсоса из него воды через фильтровальную воронку при разрежении 6,65 кПа в течение 1 мин.
Водоудерживающая способность раствора зависит от соотношения воды и вяжущего и от количества вяжущего в растворе. Когда раствор содержит достаточное количество вяжущего, вода, образуя адсорбционные оболочки на развитой поверхности тонкодисперсных частиц вяжущего, прочно удерживается на них. Хорошим примером этому служит глиняное тесто, удалить из которого воду крайне трудно.

Расслаиваемость наблюдается при транспортировании растворной смеси автомашинами или по трубопроводам с помощью растворонасосов. При этом смесь разделяется на твердую и жидкую фазы: твердая фаза - песок и вяжущее вещество осаждаются, жидкая - вода собирается вверху. В трубопроводе такая смесь образует пробки, устранение которых связано с большими потерями рабочего времени.

Проверить раствор на расслаиваемость можно следующим образом. Раствор укладывают в ведро слоем высотой около 30 см и определяют глубину погружения эталонного конуса. Через 30 мин снимают верхнюю часть раствора (около 20 см) и вторично определяют глубину погружения конуса. Разность значений погружения конуса для нерасслаивающихся растворов близка нулю, при средней расслаиваемое - находится в пределах 2 см. Расхождение показаний более 2 см указывает, что раствор сильно расслаивается.

Чтобы предупредить расслаивание растворных смесей, нужно правильно подбирать их состав. Если в растворе соотношение заполнителя и вяжущего материала подобрано правильно, то тесто вяжущего заполняет все пустоты между зернами заполнителя и обволакивает равномерным слоем каждую его частицу; такая растворная смесь, обладая водоудерживающей способностью, не расслаивается. Пластифицирующие добавки также повышают водоудерживающую способность растворных смесей и уменьшают их расслаиваемость.



- Свойства растворов и растворных смесей

Цементные растворы приготовляют из це­мента, песка и воды и применяют во влажных и сырых местах. Этими растворами оштукатуривают наружные стеновые панели, цоколи. С введе­нием специальных добавок их используют для устрой­ства изоляционного слоя. Цементные растворы очень прочные, но жесткие (низкая пластичность). Пластич­ность растворов повышается путем введения добавок. Составы растворов применяют в соотношении по массе : от 1: 1 до 1: 6. Растворы в со­отношении от 1: 6 до 1:4 считают жесткими и неудоб­ными в употреблении. В штукатурных работах, при­меняют чаще всего раствор в соотношении 1: 3 (табл. 2.5).

Известковые растворы приготовляют из известкового теста и песка. Применяют при производ­стве штукатурных работ внутри помещения по каменным и бетонным поверхностям. В увлажненных поме­щениях эти растворы не используют.

Таблица 2.5. Составы некоторых растворов

Растворы обладают хорошей подвижностью и пла­стичностью, немедленно твердеют и имеют сравни­тельно небольшую прочность. Количество песка в растворах зависит от назначе­ния штукатурного слоя и применяемой извести. Очень часто известковые растворы идут с добав­кой цемента или гипса.

Известково-гипсовые растворы . Для ускорения твердения в известковые растворы добав­ляют гипс в соотношении от 1: 0,25 до 1: 1. Предна­значаются они для оштукатуривания каменных, дере­вянных поверхностей. Из этого раствора хорошо вы­тягиваются карнизы. Известково-гипсовый раствор приготовляют не­большими порциями, чтобы за короткое время можно было его использовать и приготовить новый.

Цементно-известковые растворы при­готовляют из цемента, известкового теста и песка. Применяют для оштукатуривания наружных стен,
увлажняющих частей зданий, ванных комнат, наруж­ных откосов. Состав - : известковое тесто: пе­сок 1: (%6/-1) : (3…5).
Жизнеспособность раствора 1 ч. Эти растворы пластичнее цементных, легко разравниваются тонким слоем и расслаиваются меньше цементных. Марка ра­створа зависит от марки цемента.

Растворы из сухих смесей . Сухую смесь изготовляют централизованно из портландцемента, сухого мелкого речного песка с добавкой известковой
муки. Применяют для накрывочного слоя, выполнения рустов и стыков железобетонных изделий. Выпуска­ют смесь марок 50, 75, 100, 150.

Терразитовые смеси состоят из вяжущего материала и заполнителей разной крупности (крош­ка, стекло, слюда) и пигментов.
Приготовляют терразитовый раствор непосредст­венно перед нанесением соединением с водой до тре­буемой консистенции.

Каменные смеси содержат в себе цветные цементы (может быть добавка известкового теста), крошку различных каменных пород и пигменты.

Цементно-известковые смеси состоят из цемента (80%) , гидратной извести (20%) и пиг­ментов. Предназначены для оштукатуривания поверх­ностей, находящихся во влажном режиме. Из сухих смесей или отдельных составляющих при­готовляют декоративные растворы для оштукатури­вания фасадов зданий непосредственно перед нанесе­нием.

|| Битумные вяжущие материалы. Нефтяные битумы || Кровельные рулонные материалы || Кровельные мастики для рулонных материалов. Классификация мастик || Герметизирующие материалы || Листовые и штучные кровельные материалы. Асбестоцементные кровельные материалы || Теплоизоляционные материалы. Назначение и классификация || Материалы для выравнивающих стяжек и защитного слоя кровель || Окрасочные составы и замазки. Олифы || Минеральные вяжущие вещества. Назначение и классификация || Строительные растворы. Виды и классификация растворов || Общие сведения о крышах, кровлях и об организации кровельных работ. Классификация крыш || Подготовка оснований под кровли. Подготовка поверхности оснований || Устройство кровель из рулонных материалов. Подготовка кровельных материалов || Устройство мастичных кровель. Кровли из битумных, битумно-полимерных и полимерных мастик || Устройство кровель по панелям покрытий повышенной заводской готовности. Комплексные панели || Устройство кровель из штучных материалов. Кровли из мелкоштучных материалов || Кровли из металлочерепицы. Общие сведения || Устройство кровли из листовой стали. Подготовительные работы || Ремонт кровель. Кровли из рулонных материалов || Техника безопасности

Основными показателями качества растворной смеси являются подвижность, водоудерживающая способность, расслаиваемость, средняя плотность. Для того чтобы с растворной смесью было удобно и легко работать, она должна быть пластичной. Пластичность растворной смеси принято характеризовать ее подвижностью.

Подвижность растворной смеси (консистенция) - ее способность растекаться под действием собственной массы или приложенных к ней внешних сил. Она характеризуется глубиной погружения (см) в нее эталонного конуса. Подвижность смеси зависит от ее состава, т. е. соотношения между вяжущим материалом и заполнителем, вида вяжущего и заполнителя, а также от соотношения между количеством воды и вяжущего. В зависимости от подвижности (см) растворные смеси подразделяют на следующие марки: Пк-4 - 1...4; Пк-8 - свыше 4 до 8; Пк-12 - более 8 до 12; Пк-14 - более 12 до 14.

Водоудерживающая способность раствора - способность удерживать или, наоборот, отдавать избыточную воду при наличии отсоса. Это свойство предохраняет растворную смесь от потери большого количества воды при укладке на пористые основания, а также при ее транспортировании. Для повышения подвижности и водоудерживающей способности цементных растворов в их состав вводят добавки - неорганические дисперсные (известь, глину, золу) и органические пластифицирующие (мылонафт, омыленный древесный пек).

Расслаиваемость растворной смеси , характеризующую ее связность при динамическом воздействии, определяют сопоставлением содержания заполнителя в нижней и верхней частях свежеотформованного образца размером 150х150х150 мм. Процесс расслаиваемости сопровождается разделением растворной смеси на твердую и жидкую фракции: твердая фракция - песок и вяжущее вещество - опускается вниз, жидкая фракция - вода - собирается вверху. Для предупреждения расслоения растворных смесей необходимо правильно подобрать их состав. Если в растворе соотношение заполнителя и вяжущего материала подобрано правильно, то вяжущий материал заполняет все пустоты между зернами заполнителя и обволакивает равномерным слоем каждую его частицу; такая растворная смесь, обладая водоудерживающей способностью, не расслаивается. Пластифицирующие добавки также повышают водоудерживающую способность растворных смесей и уменьшают их расслаиваемость. Расслаиваемость свежеприготовленной растворной смеси не должна превышать 10%.

Плотность растворной смеси характеризуется отношением массы уплотненной растворной смеси к ее объему и выражается в г/см3. Основными показателями качества раствора являются прочность на сжатие, морозостойкость, средняя плотность.

Прочность раствора характеризуется маркой. Марка раствора определяется пределом прочности при сжатии стандартных образцов кубов размером 7,07х7,07х7,07 см, которые изготовляют из рабочей растворной смеси и испытывают после 28-суточного твердения при 25°С. По прочности на сжатие для растворов установлены марки 4, 10, 25, 50, 75, 100, 150 и 200.

Морозостойкость раствора характеризуется способностью образцов выдерживать в насыщенном водой состоянии заданное количество циклов попеременного замораживания и оттаивания не разрушаясь. При этом прочность образцов не должна снижаться более чем на 25% при потере их в массе не более 5%. В зависимости от числа выдерживаемых циклов попеременного замораживания и оттаивания определяют марку раствора по морозостойкости. Для растворов установлены следующие марки по морозостойкости: 10, 15, 25, 35, 50, 75, 100.


Т рудоёмкость работ, связанная с применением строительных растворов занимает приблизительно 35-40 процентов от всех затрат на строительство объектов. Поэтому учёные уделяют много времени для совершенствования этого вида работ. Большое внимание проектировщиков и сконцентрировано на внедрении новейших технологий, связанных с мокрыми процессами.

Д ля этого необходимо иметь в первую очередь стройматериалы высокого качества. Сегодня ни новое строительство, ни реконструкция и ремонт не мыслимы без применения сухих полимерных смесей. Они однозначно более высокого качества, чем традиционные составы.

О бычные растворные смеси приготовляют способом смешения минеральных вяжущих (известь, цемент и так далее), песка и воды в промышленных условиях или непосредственно на стройплощадках. При транспортировке, на раствор действуют множество факторов, что могут привести к снижению качества растворов, например расслаивание или снижение подвижности. На стройплощадках с целью повышения подвижности, а значит, удобства укладки вводят дополнительные порции воды. Но необоснованное изменение водоцементных пропорций может привести к резкому снижению прочности раствора. Кроме того повышается его усадка, понижается устойчивость к трещинам, увеличивается пористость, что в свою очередь приводит к снижению морозостойкости. Эти факторы в конечном итоге резко снижают долговечность строительного объёкта.

К роме того, перевозить готовые растворные смеси промышленного приготовления при температуре ниже нуля необходимо специальным транспортом. Если этого транспорта нет, в смесь нужно вносить противоморозные компоненты, что может с большой долей вероятности отразиться на надёжности и долговечности объёктов, созданных на этих растворах. Приготовление растворной смеси непосредственно на стройплощадке без помощи специальной лаборатории может привести к неправильным расчётам дозировки, что может отразиться на стабильности составов и соответственно качестве проделанной работы.

Т акой способ приготовления растворов не приспособлен к введению дополнительных химических компонентов, и не позволяет приготавливать высококачественные смеси широкого ассортимента.

В результате широкое распространение получили случаи, когда не соблюдаются проектные решения и происходит грубое нарушения технологии строительных работ. Все эти недостатки можно нейтрализовать, если начать использовать сухие модифицированные смеси промышленного производства.

В отличие от традиционных растворных смесей, сухие растворные смеси поступаю на объект в сухом виде, и доводятся до готовности водой только перед использованием. Таким образом, перед традиционными смесями полимерные составы имеют следующие преимущества:
– значительно повышается качество выполняемых строительных работ из-за того, что строительные составы стабильны;
– в зависимости от типа работы и степени механизации производительность труда может возрасти от полтора до трёх раз;
– материалоёмкость выполняемых работ снижается в три-четыре раза;
– операции по снабжению и складированию значительно упрощаются.

В кладке стен снаружи применяют растворные смеси как невысокой сложности (на цементе), так и высокой сложности (на цементе и извести, цементе и глине и тому подобное), отличающиеся повышенным коэффициентом пластичности, способностью сдерживать воду и экономностью. Способы приготовления безводных смесей дают возможность изготовлять составы с чётко улучшенными совокупностями наполняющих добавок и чётким отмериванием начальных составляющих. Только точное придерживание указаний по подготавливанию начальных компонентов, их отмеривание и старательное смешивание и есть те критерии, которые определяют характер безводных соединений. Из-за этого достигается постоянное немалое качество полученного продукта (раствор, бетон и тому подобное). И поэтому изменённые безводные смеси так распространены, даже учитывая их значительную изначальную цену.

В конце концов, безводные соединения и продукт, на них основанный, получаются более дешёвыми, чем продукт на основе привычных соединений, из-за обеспечения растущей трудовой производительности, низкой материалоемкости, высоким характеристикам использования и, что самое главное, значительно более долгому сроку использования. Как раз долгий срок использования и выступает как определяющий фактор при оценке экономической эффективности использования какого-либо сырья. Не секрет, что расходы по использованию возрастают пропорционально уменьшению промежутка между ремонтами. Как ни прискорбно, но при строительстве нередко доводится попадать в ситуацию, когда использование недорогих стройресурсов, например, смесей для раствора, приводит к немалым затратам на использование. Поэтому, чтобы оценить экономи-ческую эффективность использования сухих смесей, необходимо обращать внимание и на единоразовые затраты, и на затраты на использование, чтобы верно решить, насколько они окупаемы. К примеру, в практике строительства зафиксировано много случаев, когда использование растворов на цементе и извести для кладки из кирпича вызывает наличие на фасадах строений «высолов», бороться с которыми значит не только тратить много сил, но и средств. Опять-таки, из-за того, что ассортимент безводных соединений достаточно велик, существует возможность самое лучшее для определённых работ и уменьшить расходы на их исполнение.

Б езводные соединения, которые есть на рынке строительных материалов, разделяют по главным признакам, которых три:
- в зависимости от вяжущего;
- в зависимости от того, каков наполнитель по дисперсности;
- в зависимости от того, каково основное назначение.

П о разновидности вяжущего элемента безводные соединения можно делить на:
- на цементе (имеющие в составе цемент);
- не имеющие в составе цемент.

Д исперсность наполняющего безводные соединения делит на:
- с крупным зерном - крупность наполняющего до двух с половиной миллиметров;
- тонкодисперсные (с мелким зерном) - крупность наполняющего не больше, чем триста пятнадцать сотых миллиметра.

О сновное назначение сухие смеси подразделяет на:
- кладочные - кладка блоков ячеистой структуры, кирпича, камней;
- для монтажа - монтаж панелей большого размера и перегородок;
- на клею - облицовывание стройповерхностей;
- для затирки (фуги) - шовная затирка в промежутках облицовочных материалов;
- для изоляции от воды - устройство вертикальной и горизонтальной гидроизоляции цоколей, подвалов, фундамента и так далее;
- защитно-отделочные на штукатурке - устройство отделочного декора внутри и снаружи здания;
- уничтожающиеся сами по себе - устройство половых оснований и стяжек;
- для шпаклёвки-заделка раковин и неровностей на бетонно-штукатурных основаниях;
- - грунтовочные - для улучшения сцепления основания и выделенных слоев.

М одифицированные сухие смеси для кладки из кирпича и камня представляют собой смешанные между собой минеральные , минеральные наполнители, имеющие строго фиксированную дисперсность, полимерные соединяющие и изменяющие добавления.

Д обавки необходимы для сохранения удобства укладывания смесей для растворов при совмещении их с основанием, имеющим пористую структуру. Добавления-пластификаторы способны оказаться как органической, так и не органической структуры. Они увеличивают свойство смеси для раствора задерживать влагу. Этот вид сырья отличается тем, что строитель защищён от недочётов, которые могут быть при работе с привычными растворами. Производители безводных составов выбрали ресурсы и материалы высокого качества, разделили их точной дозировкой, строитель же должен лишь затворить водой подготовленное сырьё в необходимой пропорции. Кроме того, все безводные составы идут на водяном основании.

Д исперсная добавка неорганического характера состоит из микроскопических элементов, которые замечательно сдерживают влагу (известь, зола, молотый доменный шлак и т.п.). Поверхностно-активные и воздухововлекающие добавки органической природы улучшают удобоукладываемость растворных смесей, а также позволяют сберечь вяжущий элемент, увеличивают стойкость к морозу, уменьшают впитываемость влаги и растворную усадку.

С троительная практика часто использует заделывание швов кладки из кирпичейраствором разных цветов. Чтоб получить смеси для растворов разных цветов, к их составляющим добавляют красящие вещества. Это позволяет подобрать оттенок, который больше всего подходит под цвет кирпича или же составляет с ним контраст. Чтобы приготовить цветной раствор, нередко используют цемент белого цвета, используемый как вяжущее, а как заполнитель, возможно применение известняка или кварца. Такие растворы по прочности имеют от десяти до двадцати МПа. Безводные смеси и их составы в табл. 52 .

Д ля того, чтобы сделать лучше свойства адгезии, снижения водопотребности и увеличения пластичности в смеси добавляют ПВА. Чтобы уменьшить гидровпитываемость и увеличить стойкость к морозам штукатурки, применяют средства, стимулирующие сопротивление влаге, на основе органического кремния. Промежуток, за который растворы на основе гипса и перлита схватываются, корректируют добавлением в воду «тормоза» на основе клея и извести или же шлама из мелляса. Безводные смеси для кладки привозятся в мешках, масса которых, как правило, составляет четверть центнера, разводятся при помощи воды по месту строительства и смешиваются в миксере или дрелью с насадкой. Наилучший объём замеса на один раз равен одной упаковке. Но замесить нужный объём раствора несложно, если соблюдать водные пропорции и пропорции безводной смеси.

Таблица 52. Составы сухих смесей, % массы

Портланд цемент Гипс строительный Перлит марки 100 Рубленое стекловолокно Плотность смеси, кг/м3
75 - 23 3 360
70 - 25 5 350
65 - 30 5 340
60 - 33 7 330
- 80 15 5 340
- 75 20 5 330
- 70 23 1 325
- 65 25 5 315

М иксер помогает вручную смешивать безводные смеси с нужным объёмом воды до получения смеси однородной природы без уплотнений. Долговечность растворов имеет зависимость от составляющих компонентов и колеблется между двумя и четырьмя часами. Материал, успевший стать твёрдым, ни за что нельзя заново разводить водой, превращая его в якобы годный. Если раствор наносится механически, придерживание инструкции производителя необходимо для следования порядку технологии. Многие инструкции предписывают очень интенсивное и старательное смешивание раствора непосредственно в миг соединения смеси и воды. Огрехи смешивания способны довести до возникновения уплотнений или таких изъянов, как местное материальное незатвердевание или твердение дольше, чем следует, локальное появление пузырей и так далее. Как вариант, рассматривается:
–– растворное изготовление;
- бесперебойный миксер, наполняющийся непосредственно из тары;
- бесперебойный миксер с местом, где накапливается безводная смесь, или же резервуаром;
– бесперебойный миксер, укомплектованный открытой системой из способного подавать насоса.

Н еобходимо учитывать, что миксер с барабаном не всегда даёт необходимый состав однородной природы. В условиях дома позволительно воспользоваться мощной дрелью с низкими оборотами и насадкой для смешивания. Но насадка должна быть такой длинной, чтобы можно было старательно размешать сырьё на всей глубине, включая дно ёмкости, в которой производится смешивание. Наиболее распространенные безводные смеси для кладки из кирпича и камня приведены в табл. 53 .

Таблица. 53 Номенклатура смесей для каменной кладки

п/п Область применения Фирма изготовитель Наименование смеси
1 2 3 4
1 Кладка стен, заделка швов бетонных пане-лей, стяжка ОАО «БИРСО БИРСС 1, 2, 3
2 То же при отрицательных температурах ОАО «БИРСС» БИРСС 1М, 2М, ЗМ
3 Кладка стен из блоков газо- и пенобетона ОАО «БИРСС» БИРС ПОРО БЕТОН 26Я
4 Кладка стен из кирпи-ча и керамзитов.ых блоков ООО «Серголит» Цементные кладоч-ные растворы М50, М75, М100, М150
5 Кладка стен из кирпи-ча, газобетонных блоков ООО «Петромикс» ПЕТРОМИКС Б; ПЕТРОМИКС ПМД (противоморозная добавка)
6 Кладка стен из кирпи-ча, природного камня, бетонных блоков, газобетонных блоков Нпооо «Радекс» РСС (кладочная цементная)
7 Кладка стен из кирпи-ча, камня, блоков из легкого бетона Компания «Завод Novomix» NOVOMCC-M-100
8 Кладка стен из кера-мического и силикат-ного кирпича Компания «АжиоСтрой» РУНИТ; Монтажная смесь М20
9 Кладка: блоков из яче-истого бетона при производстве внут-ренних и наружных работ ООО «КОнсоЯит» CONCOLIT 210
10 Кирпичная кладка из кирпича, блоков Из ячеистого бетона и газобетона ООО«АТЛАС-Москва» Клей ATLAS, ATLAS INTER, ATLAS KB-15
11 Кладка стен из ячеис-того бетона ГК «ЮНИС» UNIS2000
12 Кладка блоков из яче-истого бетона Компания «Сибирская Клей для ячеистого бетона
13 Кладка блоков из газобетона и силикатного кирпича ооо «ФоРекс»(«СКАНМИКС») Клей SCANFIX EASY
14 Кладка печей и дьшо-ходов в помещениях _ SCANTERMSA
15 Кладка огнеупорного кирпича _ SCANTERM TK

В ыбирая безводную смесь, вдумчиво ознакомьтесь с руководством по эксплуатации от производителя и другими данными для потребителя, которые являются сопутствующими документами для товара. Обязательно нужно проверить пригодность смеси относительно сроков, так как просроченный продукт не позволит получить необходимое качество.