Для отопления помещений применяется закрытая и открытая система теплоснабжения. Последний вариант дополнительно обеспечивает потребителя горячей водой. При этом необходимо контролировать постоянное пополнение системы.

Закрытая система применяет воду только как теплоноситель. Она постоянно циркулирует по замкнутому циклу, где потери минимальны.

Любая система состоит из трех главных частей:

  • источник тепла: котельная, ТЭЦ и др.;
  • тепловые сети, по которым транспортируется теплоноситель;
  • потребители тепла: калориферы, радиаторы.

Особенности открытой системы

Достоинством открытой системы является ее экономичность. Из-за большой протяженности трубопроводов качество воды ухудшается: она становится мутной, приобретает цветность, имеет неприятный запах. Попытки очистить ее делают способ применения дорогим.

Трубы теплосети можно увидеть в больших городах. Они имеют большой диаметр и укутаны в теплоизолятор. От них делаются отводы к отдельным домам через тепловую подстанцию. Горячая вода поступает для использования и к радиаторам отопления из общего источника. Ее температура колеблется в пределах 50-75°С.

Подключение теплоснабжения к сети производится зависимым и независимым способами, реализующими закрытую и открытую системы теплоснабжения. Первый заключается в подаче воды напрямую - с помощью насосов и элеваторных узлов, где она доводится до требуемой температуры путем смешивания с холодной водой. Независимый способ заключается в подаче горячей воды через теплообменник. Он более затратный, но качество воды у потребителя выше.

Особенности закрытой системы

Тепловая магистраль выполнена в виде отдельного замкнутого контура. Вода в ней подогревается через теплообменники от магистрали ТЭЦ. Здесь требуются дополнительные насосы. Температурный режим получается более стабильный, а вода - лучше. Она остается в системе и не забирается потребителем. Минимальные потери воды восстанавливаются автоматической подпиткой.

Закрытая автономная система получает энергию от теплоносителя, поступающего на Там вода доводится до необходимых параметров. Для систем отопления и горячего водопровода поддерживаются разные температурные режимы.

Недостатком системы является сложность процесса водоподготовки. Также дорого обходится доставка воды в тепловые пункты, расположенные далеко друг от друга.

Трубы тепловых сетей

В настоящее время отечественные находятся в аварийном состоянии. В связи с большим износом коммуникаций дешевле заменить трубы для теплотрассы на новые, чем заниматься постоянным ремонтом.

Сразу обновить все старые коммуникации в стране невозможно. При строительстве или капитальном ремонте домов устанавливают новые трубы в в несколько раз сокращающие потери тепла. Трубы для теплотрассы изготавливают по специальной технологии, заливая пеной зазор между расположенной внутри стальной трубой и оболочкой.

Температура транспортируемой жидкости может достигать 140°С.

Использование ППУ в качестве теплоизоляции позволяет сохранять тепло значительно лучше традиционных защитных материалов.

Теплоснабжение многоквартирных жилых домов

В отличие от дачи или коттеджа, теплоснабжение многоквартирного дома содержит сложную схему разводки труб и нагревателей. Кроме того, в систему входят средства контроля и обеспечения безопасности.

Для жилых помещений существуют где указываются критические уровни температуры и допустимые погрешности, зависящие от сезона, погоды и времени суток. Если сравнить закрытую и открытую системы теплоснабжения, первая лучше поддерживает необходимые параметры.

Коммунальное теплоснабжение должно обеспечивать поддерживание основных параметров в соответствии с ГОСТ 30494-96.

Наибольшие потери тепла происходят на лестничных клетках жилых домов.

Снабжение теплом большей частью производится по старым технологиям. По существу системы отопления и охлаждения должны объединяться в общий комплекс.

Недостатки централизованного отопления жилых домов приводят к необходимости создания индивидуальных систем. Сделать это сложно из-за проблем на законодательном уровне.

Автономное теплоснабжение жилого дома

В зданиях старого типа по проекту предусмотрена централизованная система. Индивидуальные схемы позволяют выбрать типы систем теплоснабжения в плане снижения расходов на энергоноситель. Здесь имеется возможность их мобильного отключения при отсутствии необходимости.

Проектирование автономных систем производится с учетом нормативов отопления. Без этого дом сдать в эксплуатацию невозможно. Следование нормам гарантирует комфорт для проживания жильцов дома.

Источником нагрева воды обычно служит газовый или электрический котел. Необходимо выбрать способ промывки системы. В централизованных системах применяется гидродинамический способ. Для автономной можно использовать химический. При этом необходимо учитывать безопасность влияния реагентов на радиаторы и трубы.

Правовые основы отношений в области теплоснабжения

Отношения энергетических компаний и потребителей регламентирует ФЗ о теплоснабжении № 190, вступивший в силу с 2010 г.

  1. В главе 1 излагаются основные понятия и общие положения, определяющие сферу правовых основ экономических отношений в теплоснабжении. В нее также входит обеспечение горячей водой. Утверждаются общие принципы организации поставки тепла, заключающиеся в создании надежных, эффективных и развивающихся систем, что очень важно для проживания в сложном российском климате.
  2. Главы 2 и 3 отражают обширную область полномочий местных органов власти, которые управляют ценообразованием в сфере теплоснабжения, утверждают правила его организации, учет расхода тепловой энергии и нормативы ее потерь при передаче. Полнота власти в этих вопросах позволяет контролировать организации теплоснабжения, относящиеся к монополистам.
  3. В главе 4 отражаются отношения между поставщиком тепловой энергии и потребителем на основании договора. Рассматриваются все правовые аспекты подключения к тепловым сетям.
  4. Глава 5 отражает правила подготовки к сезону отопления и ремонта тепловых сетей и источников. В ней описывается, что делать при неплатежах по договору и несанкционированных подключениях к тепловым сетям.
  5. В главе 6 определяются условия перехода организации в статус саморегулируемой в области теплоснабжения, организации передачи прав на владение и пользование объектом теплоснабжения.

Пользователи тепловой энергии должны знать положения ФЗ о теплоснабжении, чтобы отстаивать свои законные права.

Составление схемы теплоснабжения

Схема теплоснабжения представляет собой предпроектный документ, в котором отражены правовые отношения, условия функционирования и развития системы обеспечения теплом городского округа, поселения. По отношению к ней в федеральный закон входят определенные нормы.

  1. для поселений утверждаются органами исполнительной власти или местного самоуправления, в зависимости от численности населения.
  2. Для соответствующей территории должна быть единая теплоснабжающая организация.
  3. В схеме указываются энергетические источники с указанием их основных параметров (загрузка, графики работы и др.) и радиусом действия.
  4. Указываются мероприятия по развитию системы обеспечения теплом, консервации избыточных мощностей, созданию условий ее бесперебойной работы.

Объекты теплоснабжения размещаются в границах поселения согласно утвержденной схеме.

Цели применения схемы теплоснабжения

  • определение единой теплоснабжающей организации;
  • определение возможности подключения к тепловым сетям объектов капитального строительства;
  • включение мероприятий по развитию систем подачи тепла в инвестиционную программу организации теплоснабжения.

Заключение

Если сравнить закрытую и открытую системы теплоснабжения, в настоящее время перспективной является внедрение первой. позволяет повысить качество подаваемой воды до уровня питьевой.

Несмотря на то что новые технологии являются ресурсосберегающими и сокращают выбросы в атмосферу, они требуют значительных инвестиций. При этом не хватает квалифицированных специалистов в связи с отсутствием специальной кадровой подготовки и низким уровнем заработной платы.

Способы внедрения находятся за счет коммерческого и бюджетного финансирования, конкурсов на инвестиционные проекты и др. мероприятий.

Система теплоснабжения

Вопросы

1. Понятие системы теплоснабжения и ее классификация.

2. Централизованные системы отопления и их элементы.

3. Схемы тепловых сетей.

4. Прокладка тепловых сетей.

1. Комплексное инженерное оборудование сельских населенных пунктов./А.Б. Кеатов, П.Б. Майзельс, И.Ю. Рубчак. – М.: Стройиздат, 1982. – 264 с.

2. Кочева М.А. Инженерное оборудование и благоустройство застроенных территорий: Учебное пособие. – Н. Новгород: Нижегород. гос. архит.-строит. ун.-т., 2003.–121 с.

3. Инженерные сети и оборудование территорий, зданий и стройплощадок / И.А. Николаевская, Л.П. Горлопанова, Н.Ю. Морозова; Под. ред И.А. Николаевской. – М: Изд. центр «Академия», 2004. – 224 с.

Понятие системы теплоснабжения и ее классификация

Система теплоснабжения - совокупность технических устройств, агрегатов и подсистем, обеспечивающих: 1) приготовление теплоносителя, 2) его транспортировку, 3) распределение в соответствии со спросом на теплоту по отдельным потребителям.

Современные системы теплоснабжения должны удовлетворять следующим основным требованиям:

1. Надежная прочность и герметичность трубопроводов и установленной
на них арматуры при ожидаемых в эксплуатационных условиях давлениях температурах теплоносителя.

2. Высокое и устойчивое в эксплуатационных условиях тепло- и электросопротивление, сопротивление, а также низкие воздухопроницаемость и водопоглощение изоляционной конструкции.

3. Возможность изготовления в заводских условиях всех основных»
элементов теплопровода, укрупненных до пределов, определяемых типом и
костью подъемно-транспортных средств. Сборка теплопроводов на трассе!
готовых элементов.

4. Возможность механизации всех трудоемких процессов строительства и монтажа.

5. Ремонтопригодность, т. е. возможность быстрого обнаружения причин
возникновения отказов или повреждений и устранение неполадок и их последствий путем проведения ремонта в заданное время.

В зависимости от мощности систем и числа потребителей, получающих от них тепловую энергию, системы теплоснабжения подразделяются на централизованные и децентрализованные.

Тепловая энергия в виде горячей воды или пара транспортируется от источника теплоты (теплоэлектроцентрали (ТЭЦ) или крупной котельной) к потребителям по специальным трубопроводам - тепловым сетям.

Системы теплоснабжения состоят из трех основных элементов: генератора, в котором вырабатывается тепловая энергия; теплопроводов, по которым тепло подводится к нагревательным приборам; нагревательных приборов, служащих для передачи тепла от теплоносителя воздуху отапливаемого помещения или воздуху в системах вентиляции, или водопроводной воде в си­стемах горячего водоснабжения.

В малых населенных пунктах применяются в основном две системы теплоснабжения: местные и централизованные. Цент­ральные системы не характерны для застройки не выше трех этажей.

Местные системы - в которых все три основных элемента на­ходятся в одном помещении или в смежных. Радиус действия таких систем ограничивается несколькими помещениями незна­чительных размеров.

Централизованные системы характерны тем, что тепловой генератор удален из отапливаемых зданий или потребителей горячего водоснабжения в специальное здание. Таким источником тепла может быть котельная для группы зданий, поселковая котельная или теплоэлектроцентраль (ТЭЦ).

К местным системам отопления относятся: печное на твердом топливе, печное и калориферное газовое, поэтажные или квартирные водяные системы и электрическое.

Печное отопление на твердом топливе. Отопительные печи устраиваются в населенных пунктах с небольшой теплоплотностью. По санитарно-гигиеническим и противопожарным соображениям их разрешается устраивать только в одно- и двухэтажных зданиях.

Конструкции комнатных печей весьма разнообразны. Они могут быть различной формы в плане, с различной отделкой на­ружной поверхности и с различными схемами дымооборотов, расположенных внутри печи, по которым происходит движение газов. В зависимости от направления движения газов внутри печей различают многооборотные канальные и бесканальные печи. Во-первых, движение газов внутри печи происходит по ка­налам, соединенным последовательно или параллельно, во-вторых, движение газов происходит внутри полости печи свободно.

небольшого объема зданиях или в небольших вспомогательных зданиях на промышленных площадках, удаленных от основных производственных корпусов. Примером таких систем являются печи, газовое или электрическое отопление. В этих случаях получение тепла и передача его воздуху помещений объединены в одном устройстве и расположены в отапливаемых помещениях.

Центральной системой теплоснабжения называют систему снабжения теплом одного здания любого объема, от одного источника тепла. Как правило, такими системами называют системы отопления зданий, получающих тепло от котла, установленного в подвале здания, или отдельно стоящих котельных. От этого котла может подаваться тепло для систем вентиляции и горячего водоснабжения этого здания.

Централизованными системы теплоснабжения назы­ваются в том случае, когда от одного источника тепла (ТЭЦ или районных котельных) подается тепло для многих зданий. По виду - источника тепла системы централизованного теплоснабжения разделяют на районное теплоснабжение и теплофикацию. При районномтеплоснабжении источником тепла служит районная котель­ная, а при теплофикации - ТЭЦ (теплоэлектроцентраль).

Теплоноситель подготавливается в районной котельной (или ГЭЦ). Подготовленный теплоноситель по трубопроводам поступает в системы отопления и вентиляции промышленных, общественных и жилых зданий. В нагревательных приборах, расположенных внутри зданий, теплоноситель отдает часть аккумулированного в нем тепла и отводится по специальным трубопроводам к источ­нику тепла. Теплофикация от районного теплоснабжения отлича­ется не только видом источника тепла, но и самим характером производства тепловой энергии.

Теплофикация может быть охарактеризована как централизованное теплоснабжение на базе комбинированного производства тепловой и электрической энергии. Кроме источника тепла, все другие элементы в системах районного теплоснабжения и теплофикации одинаковы.


По виду теплоносителя системы теплоснабжения делятся на две группы - водяные и паровые системы теплоснабжения.

Теплоносителем называется среда, которая передает тепло от источника тепла к теплопотребляющим приборам систем отопления, вентиляции и горячего водоснабжения. В системах теплоснабжения, применяемых в нашей стране для городов и жилых районов, в качестве теплоносителя используют воду. На промыш­ленных площадках, в промышленных районах для систем тепло­снабжения применяют воду и пар. Пар в основном применяется для силовых и технологических потребностей.

В последнее время начали применять и на промышленных предприятиях единый теплоноситель - воду, нагретую до разных температур, которую используют и при технологических процес­сах. Применение единого теплоносителя упрощает схему тепло­снабжения, ведет к уменьшению капитальных затрат и способст­вует качественной и дешевой эксплуатации.

К теплоносителям, применяемым в системах централизованно­го теплоснабжения, предъявляются санитарно-гигиенические, технико-экономические и эксплуатационные требования. Главнейшее санитарно-гигиеническое требование заключается в том, что любой теплоноситель не должен ухудшать в закрытых помещениях микроклиматических условий для находящихся в них людей, а в про­мышленных зданиях и для оборудования. Теплоноситель не должен обладать высокой температурой, так как это может вести к высокой температуре поверхностей нагревательных приборов и вызывать разложение пыли органического происхождения и не­приятно воздействовать на человеческий организм. Максимальная температура на поверхности нагревательных приборов не должна быть выше 95-105 °С в жилых и общественных зданиях; в про­мышленных зданиях допускается до 150 °С.

Технико-экономические требования к теплоносителю сводятся к тому, чтобы при применении того или иного теплоносителя стоимость тепловых сетей, по которым транспортируется теплоноситель, была наименьшей, а также малой была масса нагревательных приборов и обеспечен наименьший расход топлива для нагревания помещений.

Эксплуатационные требования заключаются в том, чтобы теплоноситель обладал качествами, позволяющими проводить центральную (из одного места, например котельной) регулировку тепловой отдачи систем теплопотребления. Необходимость изменять расходы тепла в системах отопления и вентиляции вызван, переменными температурами наружного воздуха. Эксплуатационным показателем теплоносителя считается также срок службы отопительно-вентиляционных систем при применении того или иного теплоносителя.

Если сравнить по перечисленным основным показателям воду и пар, можно отметить следующие их преимущества.

Преимущества воды: сравнительно низкая температура воды и поверхности нагревательных приборов; возможность транспортирования воды на большие расстояния без значительного уменьшения ее теплового потенциала; возможность центрального регулирования тепловой отдачи систем теплопотребления; простота присоединений водяных систем отопления, вентиляции и горячего водоснабжения к тепловым сетям; сохранение конденсата греющего пара на ТЭЦ или в районных котельных; большой срок службы I систем отопления и вентиляции.

Преимущества пара: возможность применения пара не только для тепловых потребителей, но также для силовых и технологических нужд; быстрый прогрев и быстрое охлаждение систем парового отопления, что представляет собой ценность для помещения с периодическим обогревом; пар низкого давления (обычно применяемый в системах отопления зданий) имеет малую объемную массу (примерно в 1650 раз меньше объемной массы воды); это обстоятельство в паровых системах отопления позволяет не учитывать гидростатическое давление и применять пар в качестве теплоносителя в многоэтажных зданиях; паровые системы теплоснабжения по тем же соображениям могут применяться при самом неблагоприятном рельефе местности теплоснабжаемого района; более низкая первоначальная стоимость паровых систем ввиду меньшей поверхности нагревательных приборов и меньших диаметров трубопроводов; простота начальной регулировки вследствие самораспределения пара; отсутствие расхода энергии на транспортирование пара.

К недостаткам пара, кроме перечисленных преимуществ воды, можно отнести дополнительно: повышенные потери тепла паропроводами из-за более высокой температуры пара; рок службы паровых систем отопления значительно меньше, чем водяных, из-за более интенсивной коррозии внутренней поверхности конденсатопроводов.

Несмотря на некоторые преимущества пара как теплоносителя, его применяют для систем отопления значительно реже воды и то лишь для тех помещений, в которых длительно не находятся люди. Строительными нормами и правилами паровое отопление допускается применять в торговых помещениях, банях, прачечных, кинотеатрах, в помещениях промышленных зданий. В жилых зданиях паровые системы не применяют.

В системах воздушного отопления и вентиляции зданий, где нет непосредственного соприкосновения пара с воздухом помещений, его применение в качестве первичного (нагревающего воздух) теплоносителя разрешается. Пар также можно использовать для нагревания водопроводной воды в системах горячего водоснабжения.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

Строительство частного дома, а особенно если оно проводится самостоятельно – это длинная череда решений самых разнообразных проблем. И одна из наиважнейших – это обеспечение в будущем здании самых оптимальных условий проживания в любое время года (если, конечно, дом не планируется только в качестве летней дачки).

А уже в этой сфере создания нужного микроклимата в помещениях наиболее сложной станет задача правильного расчета и монтажа надежной системы отопления. Несмотря на появление современных систем электрического обогрева дома, лидером по по пулярности и востребованности остается водяное отопление – оно более привычно, проверено временем, технологии его монтажа и отладки отработаны до мелочей. Хозяину дома, который выбрал именно водяное отопление, остается определиться с конкретной разновидностью – закрывая или открытая система теплоснабжения, с ее «аппаратным наполнением» и с системой разводки труб по дому.Затем идут этапы тщательного проектирования и монтажа.

Среди многочисленных публикаций по этому вопросу, размещенных в интернете, можно встретить немало таких, в которых утверждается, что открытая система теплоснабжения – чрезвычайно проста в устройстве и ее можно смонтировать буквально за один день. Если читателю попадается такие «художества» – можно безо всякого сожаления чтение прерывать и закрывать страницу – автор явно не имеет ни малейшего представления, ни об отоплении вообще , ни об открытой системе – в частности. Любая система должна быть правильно спроектирована с учето м м ногочисленных нюансов, хорошо сбалансирована, надежно смонтирована – и эти задачи никак абсолютно простыми и скорыми в исполнении не назовешь .

Что представляет собой открытая система теплоснабжения

Прежде всего, необходимо сразу сделать одно важное замечание. Очень часто, описывая открытую систему отопления, авторы все факты «мешают в кучу», преподнося ее обязательно как отопление с естественной циркуляцией теплоносителя. Ничего подобного! Открытая система может быть и с естественной, и с принудительной циркуляцией жидкости, причем при грамотном исполнении у хозяе в в сегда есть возможность легко и быстро переключаться с одного режима на другой.

Главная же особенность открытой системы – отсутствие в ее контуре какого бы то ни было искусственно созданного избыточного давления, так как она напрямую связана с атмосферой. В системе в обязательном порядке смонтирован расширительный бак, свободный объём которого предназначен для компенсации расширений жидкого теплоносителя при повышении температуры. Такой бак всегда располагают в самой высшей точки всей трубной разводки контура отопления. Таким образом, на него еще ложится функция воздухоотводчика – все скопления газов в трубах должны выйти наружу именно здесь. Служит он и своеобразным водяным затвором – слой жидкого теплоносителя, который обязательно всегда должен быть в расширительном баке, предотвращает попадание воздуха в систему извне.

Стоит рассмотреть подобную систему подробнее:

1 – источник тепловой энергии, котел , работающий на определенном виде топлива (твердом , жидком, газообразном) или использующий для нагрева электрическую энергию.

2 – восходящий от котла стояк, который поднимается до высшей точки системы и очень часто именно в этом месте заканчивается расширительным баком. Могут, правда, быть и иные варианты расположения – об этом будет сказано позже. Главное – для этого стояка всегда используется труба самого большого в системе диаметра – это помогает обеспечивать нужную разницу давления в подающей обратной трубах.

3 – расширительный бак открытого (атмосферного) типа. В этой позиции может использоваться как выпускаемый промышленными предприятиями специальный резервуар, так и, а принципе, любая подходящая по объему емкость .Так, нередко используют переделанные металлические бочки, молочные бидоны , газовые баллоны и т.п .

4 — чтобы в расширительном баке не случилось перелива, в нем всегда делают на определенном уровне сливное отверстие выходом на трубу, которая отведет избыток воды в канализацию или попросту наружу, на грунт. В принципе, в хорошо «настроенном» контуре отопления такие переливы – большая редкость. и чаще этот выпускной патрубок будет задействован для контроля наполнения всей системы, и для первичного сброса.

5 – труба, подающая теплоноситель на отопительные приборы (радиаторы). В системах открытого типа , даже если в них предусмотрена установка насоса, трубы должны иметь определенный уклон для обеспечения естественной циркуляции жидкости. Разводка труб может быть разная – об этом будет сказано ниже.

6 – Обогревательные приборы, расположенные в помещениях дома – радиаторы отопления. Конвекторы или, например, «тёплые полы» при открытой системе обычно не используются. Схема установки радиаторов может быть разной – она увязана с определенной системой разводки труб.

7 – Обратный трубопровод – обеспечивающий отток теплоносителя от радиаторов к котлу для дальнейшей циркуляции.

8 – циркуляционный насос. Система может обойтись и без него, работая по принципу естественной циркуляции, однако насос резко поднимает эффективность отопления, уменьшает расход энергоносителей.

9 – кран (вентиль) для первичного заполнения и периодического пополнения системы отопления из водопроводной сети (10). В обычном положении всегда находится в закрытом состоянии.

11 – кран (вентиль) для слива теплоносителя из системы отопления, например, для выполнения каких-либо ремонтных или профилактических работ.

  • Теперь, после устройства открытой системы отопления, несколько подробнее – о принципах ее действия.

Если в системе врезан насос, то особых вопросов и не возникает – он создает принудительную циркуляцию теплоносителя по трубам. Но как происходит теплообмен в контуре, не оснащенным насосом, или же при отсутствии электроэнергии, когда узел переключён на естественную циркуляцию?

Здесь в полную силу вступают в действие законы термодинамики. Вспомните простой пример – почему в водоеме вода всегда теплее у поверхности, и намного холоднее – по мере увеличения глубины? Ответ прост – и с газами, и с жидкостью происходят примерно одинаковые явления – увеличение их температуры (в условиях свободного объема ) приводит к снижению их плотности, а стало быть – и общей массы. Одним словом, нагретые жидкость или газ всегда легче холодных.

Теперь внимание на схему:

А это — принцип действия отопления с естественной циркуляцией

В системе отопления, по большому счету , два вида тепловых приборов, работающих в противовес друг другу. Котел (поз. 1) является первой точной теплообмены — преобразует энергию с внешнего источника в тепловую – нагревает воду. Затем иде т т ранспортировка теплоносителя до второй основной точки теплообмена – радиатора (поз.3).Понятно, что в подающей магистрали (на рисунке – красная область, поз . 2) плотность воды Ргор – существенно ниже, чем на противоположном участке (синяя область, поз . 4). Более высокая плотность жидкости Рохл означает ее «преобладание» с точки зрения гравитационных процессов – она попросту намного плотнее и тяжелее. Если грамотно расположить две основных точки теплообмена относительно друг друга, а конкретно – приборы теплоотдачи разместить выше котла на определенную высоту h , то обязательно создастся естественных циркуляционный ток жидкости. На нижней части схемы это хорошо видно. Область с теплоносителем низкой плотности условно «удалена» (она не может преобладать над более плотной). Получается два сообщающихся сосуда, один из которых выше другого. Вода стремится к равновесию, и постоянно перетекает от радиаторов к котлу.

Итак, чтобы создать естественное движение теплоносителя, котел должен быть расположен ниже самого низкого радиатора в доме. Это значение h может быть различным (чем оно выше, тем активнее будет движение жидкости), но оно не должно превышать 3 метров. Чаще всего, если существует такая возможность, котельную располагают в подвале или в цокольном этаже – это удобнее всего, так как полностью обеспечивается требуемое превышение радиаторов в комнатах первого этажа над котлом.

Если подвала в частном доме нет, то приходится делать котельную в пристройке, несколько заглубляя пол в точке установки котла. Если и такой возможности нет, то за создание системы отопления открытого типа незачем и браться – она не будет работать в режиме естественной циркуляции, и намного логичнее будет использовать сразу схему с аккумулирующим баком-ресивером.

  • Можно отметить еще одно важное свойство открытой системы отопления, работающей в режиме естественной циркуляции. речь идет о своеобразной саморегуляции интенсивности потока теплоносителя в трубах. В отличие от от опления с принудительной циркуляцией, скорость протекания жидкости по трубам здесь очень нестабильна.

При запуске котла и прогреве определённого количества жидкости, начинается ее естественный ток по трубам. Характерно, что для того, чтобы такое движение началось , котел необходимо кратковременно запустить на мощность, близкую к максимальной – чтобы преодолеть инертность воды и существующее гидравлическое сопротивление в трубах.

Пока помещения не прогреты, амплитуда температур в котле и на выходе из радиаторов отопления – максимальная. Стало быть, наибольшее значение имеет и разница в плотности теплоносителя, а значит , как мы уже выяснили – и интенсивность движения жидкости по контуру. По мере прогрева эта разность начинает уменьшаться. То есть постепенно падает и скорость перемещения теплоносителя.

В итоге при определенной стабилизации системы ток воды происходит достаточно медленно – но этого хватает для поддержания в помещениях нужной комфортной температуры (обычно – с определенной долей точности выставленной пользователем на элементах управления котла). Однако, при резком снижении температуры в помещении, например, при открытых окнах или же при похолодании на улице, ток жидкости самопроизвольно ускорится – система будет стремиться достичь равновесия.

Достоинства и недостатки системы отопления открытого типа

Система отопления открытого типа , безусловно, не является «самим совершенством», и у нее немало серьезных недостатков. Тем не менее , некоторые хозяева жилья выбирают именно такую схему, мотивируя свое решение ее преимуществами:

  • Надежность — наверное, главный плюс такой системы отопления. Схема досконально проверена, прошла все мыслимые испытания в самых разных условиях и полностью доказала свою эффективность. По большому счету , в системе с естественной циркуляцией попросту нечему выходить из строя (если не брать в расчет собственно, котел ). Срок «жизни» такого отопления определяется исключительно эксплуатационными сроками труб и радиаторов – при грамотном подборе комплектующими это будет исчисляться многими десятками лет.
  • Схема – достаточно проста в монтаже, в ней нет особо сложных узлов.
  • Подобная система не требует какой-либо специфической отладки и настройки. Достаточно заполнить систему водой и включить котел . Принцип п ростой – котел включен – система работает, выключен – ток остановился.
  • При работе без насоса – отсутствие каких бы то ни было вибраций и характерных шумов .
  • Ничего не мешает дополнить систему циркуляционным насосом – тогда она получит полную универсальность. С насосом, конечно, потери на подогреве будут меньше, но зато в случае отсутствия электроэнергии или при выходе насоса из строя простым переключением кранов отопление переводиться в полностью энергонезависимый режим.

Узел с циркуляционным насосом — переключение режимов работы обеспечивается запорными вентилями

На схеме показано положение кранов при работе в режиме принудительной циркуляции – оба вентили поз. 1 открыты, а стоящий на магистральной трубе (поз. 2) – закрыт. Для переключения режима достаточно просто поменять положение кранов на противоположное.

  • Уже упомянутое свойство саморегуляции системы позволяет устойчиво поддерживать в помещении заданный микроклимат без каких-либо сложных дополнительных регулирующих устройств.

Теперь – о недостатках открытой системы отопления:

  • Такую систему просто невозможно поставить в очень большом доме.При удаленности порядка 30 метров от котла (по горизонтали) гидравлическое сопротивление в трубах может превысить создаваемый естественным образом напор, и в контуре создастся статическое равновесие – для отопления это недопустимо.
  • Система – очень инертна, то есть достаточно долго входит в рабочее состояние. Это объясняется и необходимостью создание естественного тока воды, и весьма большим объемом воды в контуре отопления.
  • Есть определенные сложности с приобретением материала – нужны будут т рубы разных диаметров, переходники к ним и т.п . А трубы большого диаметра – это еще и немалые деньги.
  • При монтаже системы обязательно должен быть создан уклон на всех участках трубопроводов – от подающего и до обратки , без исключения. Это следует обязательно учитывать при проектировании и составлении монтажных чертежей. Если по каким-либо причинам уклон создать на определённом участке невозможно, отопление может оказаться неработоспособным или чрезмерно «транжирящим» по части расхода энергии – определенная часть ее будет расходоваться на преодоление ненужного гравитационного и гидравлического сопротивления на прямом отрезке системы.
  • Необходимость установки расширительного бачка в самой высокой точке чаще всего приводит к тому, что его приходится монтировать в чердачном помещении. Это означает необходимость его самой тщательной термоизоляции, чтобы не допустить замерзания в пиковые зимние холода.

Хозяин дома нашел выход — разместил расширительный бак под потолком

Впрочем, некоторые мастера находят выход, размещая расширительные бачки непосредственно в помещении, закрепляя их близко к потолку или даже вообще — на самом потолке. С точки зрения эстетичности такого решения – вопрос, конечно, чрезвычайно спорный, но проблема термоизоляции решается сразу.

  • Открытая система отопления всегда сопровождается постепенным испарением теплоносителя – необходимо постоянно отслеживать его уровень. Иногда этот вопрос автоматизируют (по принципу поплавкового клапана ). Другим вариантом борьбы с испарением является слой масла, толщиной в 10— 15 мм на поверхности воды в расширительном бачке (естественно, его добавляют только тогда, когда достигнуто полное равновесие в системе). Однако, в этом случае не исключена вероятность попадания масла в нижележащие трубы, радиаторы и котел (например, при каком-то аварином падении, уровня воды), а это – крайне нежелательно.
  • Контакт т еплоносителя с воздухом означает постоянное его насыщение кислородом. Это ведет к активизации коррозионных процессов в трубах, фитингах, радиаторах, в других металлических узлах контура.

Видео: базовые принципы открытой системы отопления

Элементы системы отопления открытого типа

Выше по тексту уже перечислялись все обязательные конструктивные и технологические \элементы системы отопления открытого типа. Стоит рассмотреть их несколько подробней:

Котел

Прежде всего, необходимо определиться с требуемой мощностью этого источника тепловой энергии. Казалось бы, можно взять котел «с запасом», однако, практика показывает, что излишняя мощность, помимо удорожания самого агрегата, имеет еще несколько негативных моментов:

  • Отмечается усиленное образование конденсата в дымоходном канале.
  • Не исключены быстрый износ и поломка комплектующих.
  • Котел может работать неэффективно — он попросту не рассчитан на эксплуатацию «на малых оборотах».
  • Вполне вероятны случаи отказов автоматики – по той же причине.

Итак, котел должен быть необходимой, но отнюдь не избыточной мощности. Определить этот параметр можно по следующей формуле:

М k = Σs × Ms / 10

М k расчетная мощность требуемого котла;

Σs – суммарная площадь отапливаемых помещений дома;

Ms – удельная мощность, требуемая для обогрева на единицу площади

Показатель удельной мощности – величина дифференцированная, зависящая от региона, в котором строится дом. Примерная величина – указана в таблице.

Пример: рассчитаем мощность котла для дома в Воронежской области, с отапливаемой площадью 180 м².

М k = 180 × 1,2 / 10 = 21,6 кВт

Эту величину округляем в большую сторону, по стандартному значению имеющихся в производстве и продаже тепловых установок. Однако, есть еще три оговорки:

  • Эта формула справедлива для помещений высотой до 3 метров. Впрочем, в частном доме мало кто себе позволяет делать потолки выше.
  • Расчет справедлив лишь при условии доброкачественного утепления дома – стен, окон, дверей, пола и т.п .
  • Подобный расчет касается исключительно отопительного контура. Если есть планы подключить к отоплению, например, бойлер косвенного нагрева, то необходимо будет увеличить расчетную мощность еще на четверть.

При выборе котла можно пойти и другим путем . Многие производители, имеющие свои дилерские представительства в разных регионах, оказывают услуги по точному расчету требуемого оборудования. Нередко такие фирмы имеют собственные сайты, на которых размещены удобные и понятные калькуляторы, позволяющие быстро провести расчеты , вводя по запросу в окна данные по площади комнат, высоте потолков, материалу стен, типу дверей и окон, необходимости в контуре горячего водоснабжения и т.п . В итоге программа выдаст оптимальную мощность котла для установки в конкретном доме.

Калькулятор подсчета требуемой тепловой мощности котла

В несколько упрощенном, но дающем достаточно точные результаты, подобная программа представлена и на нашем портале. Она позволяет рассчитать потребности в тепловой энергии для каждого помещения. Просуммировав полученные значения несложно определить и общую потребную мощность для всего дома.

Для удобства можно составить таблицу, в которую сразу занести параметры всех помещений. Например, такую:

Помещение Площадь, м² Внешние стены, количество, входят на: Количество, тип и размеры окон Наружные двери (на улицу или на балкон) Результат расчетов, кВт
ИТОГО 22,4 кВт
1 этаж
Кухня 9 1, Юг 2, двойной стеклопакет, 1,1×0,9 м 1 1.31
Прихожая 5 1, Ю-З - 1 0.68
Столовая 18 2, С, В 2, двойной стеклопакет, 1,4 × 1,0 нет 2.4
и так далее
2 этаж
Детская ….
Спальня 1
Спальня 2
и так далее

Имея план дома и представляя особенности помещений, заполнить графы будет совсем не сложно. А потом останется лишь последовательно просчитать тепловую мощность для каждого помещения и найти сумму. Это займет буквально минуты:

Расчет проводится для каждого помещения отдельно.
Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках

Укажите площадь помещения, м²

100 Вт на кв. м

Количество внешних стен

Одна две три четыре

Внешние стены смотрят на:

Север, Северо-Восток, Восток Юг, Юго-Запад, Запад

Какова степень утепленности внешних стен?

Внешние стены не утеплены Средняя степень утепления Внешние стены имеют качественное утепление

Уровень отрицательных температур воздуха в регионе в самую холодную неделю года

35 °С и ниже от - 25 °С до - 35 °С до - 20 °С до - 15 °С не ниже - 10 °С

Высота потолка в помещении

До 2,7 м 2,8 ÷ 3,0 м 3,1 ÷ 3,5 м 3,6 ÷ 4,0 м более 4,1 м

"Соседство" по вертикали:

Для второго этажа - сверху холодный чердак или неотапливаемое и не утепленное помещение Для второго этажа - сверху утепленные чердак или иное помещение Для второго этажа - сверху отапливаемое помещение Первый этаж с утепленным полом Первый этаж с холодным полом

Тип установленных окон

Обычные деревянные рамы с двойным остеклением Окна с однокамерным (2 стекла) стеклопакетом Окна с двухкамерным (3 стекла) стеклопакетом или с аргоновым заполнением

Количество окон в помещении

Высота окна, м

Ширина окна, м

Двери, выходящие на улицу или на балкон:

Какие котлы могут быть использованы в открытой системе:

  • Если в населенном пункте проведены газовые магистрали, то особо и нечего думать – на сегодняшний день подобное отопление остается самым выгодны с точки зрения стоимости энергоносителя.

Есть, правда, и значимый «минус» — потребуются обязательные согласовательные процедуры, составление соответствующего проекта и его реализация с привлечением специалистов (работники газовых хозяйств пр актически повсеместно являются «монополистами» на подобные работы и никому их не передоверяют). Это все обойдётся в достаточно «увесистую» сумму. Впрочем, это разовые вложения, которые должны окупиться спустя какое-то время.

  • Остаются популярными твёрдотопливные котлы, а в некоторых регионах, где нет никаких проблем с заготовкой дров или закупкой угля, они остаются наиболее популярными среди владельцев домов.

Сейчас это – уже не старые чугунные «гиганты», поглощающие уйму топлива и имеющие крайне низкий КПД . Современный твёрдотопливный котел – обычно агрегат длительного горения, которые не нуждается в постоянном контроле за ним. — в специальной статье нашего портала.Кстати, там же можно найти немало советов и о том, как отопления, использующий функцию дожига пиролизных газов.

  • Электрические котлы в системах открытого типа используют нечасто. Чего греха таить – подобная система все же проигрывает в экономичности системе закрытого типа. То, что допустимо при использовании недорогих энергоносителей – газа или дров (угля), выльется в «хорошую копеечку» при при менении электрического нагрева. С какой-то доле условности можно применить индукционный нагрев, но опять же – лучше тогда сразу смонтировать закрытую систему, которая гораздо легче поддается точным регулировкам.

Среди всез электрических котлов, индукционный — самый экономичный

А вот электродный котел в открытой системе использовать нельзя в принципе – он требует особого и стабильного химического состава теплоносителя. В негерметичном контуре соблюсти это условие просто невозможно.

  • Оптимальным по функциональности, хотя и довольно дорогим решением стане приобретение многофункционального, комбинированного котла, который может работать в разных режимах. Например, есть модели «дрова + газ», «газ + электричество», «дрова + уголь + газ», или даже «дрова + уголь + дизтопливо + газ».

Самое лучшее, но дорогое решение — комбинированный котел, работающий на разных видах топлива

Расширительный бачок

Как уже упоминалось, этот элемент можно приобрести готовым – они есть в продаже, либо сделать самостоятельно из металлического листа, либо из имеющейся металлической емкости . Лучше использовать металл, не подверженный коррозии – тогда отопление будет служить долго.

При изготовлении простейшего бака необходимо предусмотреть откидную или съемную крышку – она позволит производить контроль за уровнем воды в системе, но в закрытом состоянии все же минимизирует испарение жидкости.

В верхней части бака должен быть установлен патрубок, по которому, в случае избытка жидкости, она будет стекать вниз.

Считается достаточным, если объем расширительного бака составляет ориентировочно до 10 % от общего объема отопительной системы.

Кстати, установка расширительного бака открытого типа прямо над котлом в высшей точке отнюдь не является какой-то догмой. Такая схема хороша, однако, далеко не всегда исполнима просто по причинам несоответствия ей реального расположения технических помещений здания.

На рисунке представлено несколько различных вариантов размещения расширительного бака, их которых можно выбрать наиболее приемлемый к имеющимся условиям.

Примечательно, что в случае установки расширительного бачка на обратной трубе, все равно потребуется обязательный монтаж воздухотводного клапана в самой высшей точке системы (на схеме это не показано), а это – ненужные дополнительные сложности.

Радиаторы отопления

Ели котел – основной элемент в части получения тепловой энергии, то радиаторы – главные по части ее «раздачи» по по мещениям. А это означает, что очень важно точно определить, в какой комнате, каких и сколько их нужно устанавливать.

Для начала , нужно определиться с видом радиаторов. Они различаются и конструктивно, и по материалу изготовления, а суммарно – по своим эксплуатационным характеристикам.

  • Традиционные чугунные батареи отлично подходят для открытой системы отопления. Да, они достаточно инертны в нагреве и остывании, но это даже неплохо в сочетании с аналогичными свойствами открытой схемы – очень точной настройке этот «комплекс» все равно не поддаётся, а вот экономия на такой инертности может быть достигнута весьма внушительная.

Нередко упрекают такие батареи за излишнюю массивность и за неэстетичный внешний вид. Ну, во-первых , насчёт вида можно поспорить – современные чугунные радиаторы очень симпатичны, а некоторые – так просто являются украшением помещений. А во-вторых, насчет массивности – это скорее достоинство, если, конечно, правильно решить вопрос их надежного крепления.

  • Стальные радиаторы – недорогие, достаточно легкие , долговечные (если имеют качественное антикоррозийное покрытие).

Стальные радиаторы для домашнего автономного отопления — не самый лучший вариант

Казалось бы – хороший вариант, но вот для автономной системы отопления, тем более – открытой, их лучше не использовать. Дело в том, что они очень быстро отдают тепло и остывают – котел при таких радиаторах будет включаться очень часто.

  • Алюминиевые радиаторы – сегодня находятся в лидерах среди «собратьев». Они легки, долговечны, очень просто и быстро монтируются. Имеют великолепную теплоотдачу и нужную теплоемкость . Хорошо вписываются в любой интерьер.

Алюминиевые радиаторы — хорошая теплоотдача, но не слишком высокая стойкость к коррозии

Недостаток у них есть, и немалый – этот металл весьма неустойчив к кислородной коррозии. Значит, или нужны алюминиевые радиаторы со специальным антикоррозийным покрытием (такие есть в продаже, но они, безусловно, дороже), или теплоноситель должен быть определенного качества. К сожалению, второй пункт соблюсти в условиях открытой системы отопления – почти невозможно.

  • Биметаллические радиаторы – самый современный вариант, сочетающий в себе все лучшие качества. Недостатков практически нет, кроме одного – высокая цена. Подобные радиаторы хорошо подходят для отопления с высоким давлением в контуре, так как на них легко устанавливаются электронные или электромеханические термостаты, поддерживающие точный уровень температуры в помещении.

Биметаллические радиаторы — хороши всем, но несколько дороговаты

Увы, но при открытой системе отопления подобная возможность остается невостребованной, и нужно очень хорошо подумать, стоит ли переплачивать за такие батареи.

Второй вопрос – как определиться с требуемым количеством секций в батарее отопления. Все зависит от размеров помещения, его особенностей, и от удельной мощности каждого секции радиатора.

Итак, для среднестатистических комнат (жилые, с высотой потолков 2,5 ÷ 3 м ) обычно принимают нормой мощность отопления, равную 41 Вт/м³ объема помещения. Таким образом, несложно подсчитать потребную суммарную мощность, умножив объем (произведение длины, ширины и высоты комнаты) на 41.

Например, комната 3,5 × 6 × 2,7 м . Объем равен 56,7 м³.Требуемая базовая мощность радиаторов – 2325 Вт или 2,33 кВт. Однако не зря было упомянуто, что эта мощность – базовая. Она рассчитана на комнату внутри здания с одной внешней стеной и одним окном на улицу. Если реально условия иные, то в это значение требуется внести некоторые поправки – смотри таблицу.

Допустим, что в рассматриваемом нами примере комната угловая, с одним окном, с выходом на север, а радиаторы убраны в нишу. Значит, к полученному значению необходимо добавить: 20% за угловое расположение, 10% — за север и 5% – за расположение батареи под окном. Итого поправка – 35%, а суммарная мощность – 3,15 кВт.

Теперь нужно разделить полученное значение на удельную мощность одной секции радиатора. Этот показатель обязательно указывается в технических характеристиках любой модели радиаторов (в случае со стальными неразборными радиаторами – указывается мощность целого блока).

Допустим, в нашем случае запланирована установка биметаллических радиаторов «Рифар » с удельной мощностью секции в 204 Вт. Несложное деление дает 15, 44, или округлённо 16 секций для нормального отопления данной , достаточно большой и холодной комнаты.

Перелагаем воспользоваться возможностями нашего специального калькулятора, который поможет быстро и точно просчитать требуемое количество секций радиатора для помещения.

Открытая и закрытая системы теплоснабжения.

Описаний открытых и закрытых систем теплоснабжения, их принципиальных отличий в интернете можно найти огромное количество, поэтому подробное описание мы давать не будем. Остановимся только на их принципиальных различиях, без понимания которых в дальнейшем будет сложно понять примеры из практики. За основу возьмем то, что читатель пока не в теме. Для специалистов в ЖКХ этот раздел можно пропустить, справедливо полагая, что эти сведения для него не представляют особой ценности, он уже все знает и во всем разбирается.

Итак, начнем с основных различий. Системы теплоснабжения принципиально разделяются на две основные группы. Это открытые системы и закрытые. Принципиальное и основное различие в том, что в открытых системах теплоснабжения отбор горячего водоснабжения осуществляется непосредственно из системы теплоснабжения жилого дома (системы отопления), что создает проблемы с качеством горячего водоснабжения. В воде возможно присутствие различных взвесей, ржавчины и других веществ. Представляет особую сложность и возможность промывки, обслуживания данной системы. Несмотря на негативное отношение к открытой системе теплоснабжения в настоящее время, система получила широкое распространение при строительном буме во второй половины двадцатого века за счет своей простоты конструкции и монтажа при строительстве новых домов, относительно невысокой стоимости. В те годы вопросы энергосбережения стояли на последнем месте, ресурсы мы как-то не считали, предполагая, что они вечные. А вопрос дальнейшей эксплуатации данных систем вообще не учитывался.

В свою очередь открытые системы теплоснабжения разделяются на зависимые и независимые. Самой простой является открытая, зависимая система теплоснабжения. На размещенной ниже схеме видно, что теплоноситель идет к потребителю прямо из котельной и отбор ГВС в жилом доме (на схеме не показано) забирается в систему ГВС непосредственно из системы отопления жилого дома. Самая простая и в то же время неэффективная система теплоснабжения.

Открытая система теплоснабжения (независимая) это уже новый этап в развитии систем теплоснабжения. Система, за счет применения в системе теплообменника, имеет раздельный контур. То есть, котельная вода циркулирует по своему контуру, система отопления потребителя по своему. При применении данной системы у организации, занимающейся вопросами эксплуатации теплосети, появилась возможность химически обрабатывать сетевую воду, что безусловно сказалось на долговечности работы систем и котельных установок. В настоящее время осуществляется массовый перевод систем с зависимой схемы на независимую. Однако, независимая система не решила проблему качества горячего водоснабжения. ГВС осталась наиболее уязвимой системой за счет забора горячей воды из системы отопления.


Окончательным этапом развития систем теплоснабжения в настоящее время по справедливости стала закрытая система теплоснабжения, которая решила проблему обеспечения жителей качественным горячим водоснабжением. Схем исполнения закрытых систем теплоснабжения много, но основной принцип для нее один. Это наличие разделенных контуров, как системы отопления, так и системы горячего водоснабжения. На приведенной ниже схеме это отчетливо видно (для разгрузки схемы, мы не стали показывать обвязку оборудования ЦТП и циркуляционные насосы, которые в данной схеме присутствуют).

Таковой является система, теплоноситель которой изолирован и работает исключительно по назначения. Он не участвует в водоснабжении прямо, а только косвенно, не отбирается потребителями из сети. Скажем так, «трансфер» тепла для систем отопления и для горячего снабжения проходит через теплообменники. Для этого, в теплопунктах зданий устанавливают сами теплообменники (подогреватели), насосы различной специализации, смесители, аппаратура для контроля и пр.

Список может меняться в зависимости от типа и мощности пункта. Центральный и индивидуальный тепловой пункты могут иметь различную степень автоматизации, системы могут быть многоступенчатыми и иметь в своём составе несколько пунктов на пути, от ТЭЦ к потребителям. Стандартно, при закрытом теплоснабжении, теплопункт имеет два контура, обеспечивающих передачу теплоты системе отопления и системе водоснабжения. Каждый контур оборудован теплообменником соответствующего типа, пластинчатым, многоходовым, пр. индивидуально определяет проект.

Жидкость или антифриз, передающие теплоту, от теплоприготовительной установки, вторичным сетям, имеет неизменный объём и может лишь восполняться подпитывающей системой в случае потерь. Теплоноситель основной магистрали, должен проходить водоподготовку, для придания ему необходимых свойств, обеспечивающих безвредность для сетевых трубопроводов и теплообмена, как теплопунктов так и теплоприготовительных мощностей.

Эффективность теплоносителя

Цикл проходимый носителем тепла немногим сложнее, чем в открытом механизме. Охлаждённый теплоноситель, по возвратной магистрали поступает к теплофикационным подогревателям или котельным, где принимает температуру от горячего, технологического пара турбин, конденсата или нагревается в котле. Потери, если таковые имеются, восполняются подпиточной жидкостью, благодаря регулятору. Устройство всегда поддерживает заданное давление, удерживая его статическое значение. Если тепло получают от ТЭЦ, теплоноситель нагревается от пара, имеющего температуру 120° – 140°С.

Температура зависит от давления и отбор обычно производится из цилиндров среднего давления. Часто теплофикационный отбор на установке всего один. Отводимый пар имеет давление 0.12 – 0.25 МПа, которое повышают (при регулируемом отборе) при сезонном похолодании или расходе пара на аэрацию. При похолодании жидкость может догреваться пиковым котлом. Аэратор может быть подсоединён к одному из отборов турбины, а в питательный бак поступает химически очищенная, подготовленная вода. Отводимое для потребителей тепло, получаемое от паровых конденсатов и пара, регулируют качественно, то есть при постоянном объёме носителя регулируют только температуру.

По сетевому трубопроводу, теплоноситель поступает в теплопункт, где контуры отопления формируют требуемую температуру. Контур водоснабжения, делает это с помощью циркуляционной линии и насоса, получив подогретую теплообменником воду и подмешивая её к водопроводной и остывающей в трубах воде. Отопительный же имеет свою регулирующую арматуру, позволяющую качественно влиять на отбор тепла. Закрытая система предполагает независимое регулирование отбора тепла.

Однако такая схема не обладает достаточной гибкостью и должна иметь производительный трубопровод. В целях снижения вложений в теплосеть, организовывают связанное регулирование, при котором регулятор расхода водоснабжения определяет баланс в сторону одного из контуров. В результате, потребность в нагреве компенсируется из отопительного контура.

Недостаток подобной балансировки, несколько плавающая температура обогреваемых помещений. Нормативы допускают колебания температуры в пределах 1 – 1.5°С, что обычно происходит, пока максимальный расход на воду не превысит 0.6 расчётного, на отопление. Как и в открытой системе теплоснабжения, возможно применение совмещённого качественного регулирования подачи теплоты. Когда расход теплоносителя и сами теплопроводные сети рассчитываются на нагрузку отопительной и вентиляционной системы, увеличивая температуру носителя, для компенсации потребности горячего снабжения. В подобном случае, тепловая инерция зданий, выполняет роль теплоаккумуляторов, выравнивая колебания температур, вызванные неравномерным отбором тепла из связанной системы.

Преимущества

К сожалению, на постсоветском пространстве теплоснабжение подавляющего большинства потребителей до сих пор организовано по старой, открытой схеме. Закрытая схема сулит значительный выигрыш по многим параметрам. Именно поэтому, переход на закрытое теплоснабжение, в масштабе страны может принести серьёзные экономические выгоды. К примеру в России, на государственном уровне, переход на более экономный вариант, стал частью энергосберегающей программы на будущее.

Отказ от старой схемы принесёт сокращение потерь тепла, за счёт возможности точной регулировки потребления. Каждый теплопункт имеет возможность тонко регулировать потребление тепла абонентами.

Нагревательное оборудование работающее в изолированном режиме закрытой системы, гораздо меньше подвержено воздействию привносимых открытой сетью факторов. Следствие этого, продленный ресурс котлов, теплоприготовительных установок и промежуточных коммуникаций.

Она не требует повышенной устойчивости к высокому давлению, на всём протяжении теплопроводящих магистралей, это значительно снижает аварийность трубопроводов по причине порывов давлением. В свою очередь – это снижает потери тепла при утечках. Как результат, экономия, стабильность и качество обеспечения теплом и горячей водой, компенсируют недостатки системы. А они тоже есть. Процедуры невозможно провести централизованно. Каждый отдельный замкнутый контур требует своего обслуживания. Будь то турбины, контуры абонентов или промежуточная магистраль.

Каждый теплопункт – отдельная единица, для осуществления водоподготовки. Скорее всего, при модернизации схемы из открытой в закрытую, в большинстве случаев придётся увеличить площадь, необходимую под установку оснастки ИТП, а также реорганизация электроснабжения. Помимо этого, существенно возрастает потребление холодного на снабжение здания, поскольку именно она идёт на подогрев в теплообменники и далее потребителю, при независимом подключении горячего. Это неизменно повлечёт переустройство водопровода, ради перехода на закрытую схему горячего.

Глобальное введение независимого присоединения горячего оснащения к тепловым сетям, повлечёт изрядное повышение нагрузки на внешние сети холодного водоснабжения, поскольку придётся питать потребителей увеличенными объёмами, необходимыми для горячего водоснабжения, которые сейчас даются по тепловым сетям. Для многих населённых пунктов это станет серьёзным препятствием на пути модернизации. Дополнительное оснащение насосными установками в горячем снабжении и циркуляционных установках, в механизмах отопления зданий вызовет дополнительную нагрузку на электрические сети и без их реконструкции тоже не обойтись.