История возникновения. Устройство. Выбор качественной лампы.

История ламп . В настоящее время сложно встретить человека, который не был бы знаком с лампами накаливания. Прогресс в области приборов освещения предложил альтернативные источники света – люминесцентные и диодные лампы, однако по некоторым параметрам им пока не удается превзойти обыкновенную «лампочку Ильича».

История лампы накаливания очень запутана и ее появлению предшествовали изобретения многих ученых-изобретателей.

По общепринятой версии, она началась в далеком 1872 году, когда русский ученый А. Н. Лодыгин догадался пропустить электрический ток через угольный стержень.

Сам стержень находился в безвоздушном пространстве стеклянной прозрачной колбы. Увеличение силы тока вызывало более интенсивную светоотдачу, пока не была достигнута температура плавления и лампа погасла. Так опытным путем были установлены оптимальные режимы работы для первых ламп накаливания и уже через год – в 1873 г. в Санкт-Петербурге были впервые опробованы несколько фонарей с такими лампами.

В это же самое время параллельно с Лодыгиным разработкой лампы накаливания занимался американский изобретатель Томас Эдисон. Он в 1879 году первым запатентовал лампу накаливания с угольной нитью, что впоследствии и послужило причиной, что именно его многие считают настоящим «отцом лампы накаливания».

На самом деле, как это часто бывает в области технических изобретений, лампа была изобретена в разных странах почти одновременно, поэтому нельзя с уверенностью утверждать, кому принадлежит авторство.

Работая над усовершенствованием лампы с угольной нитью, Лодыгин в 1890 году предложил заменить нить накаливания металлической, изготавливаемой из тугоплавкого металла – вольфрама. В отличие от других проводящих электрический ток материалов, вольфрам обладает очень высокой температурой плавления – около 3410°C.

В это же время Эдисон предлагает использовать в конструкции ламп изобретенную им резьбовую систему патрон-цоколь. Эта конструкция дошла до нашего времени практически, не претерпев никаких существенных изменений. Цоколь ламп накаливания обозначается «Е-XX», где «Е» - цоколь Эдисона (Edison Screw), а «XX» - внешний диаметр в мм. В Европе и на территории постсоветского пространства широкое распространение получили Е27 и Е14.

На американском континенте применяются другие размеры цоколя, чтобы избежать совместимости с европейскими аналогами, так как напряжение в электросетях различается (120 В. против 220 В., соответственно). В 1910 г. американский физик Ленгмюр предложил заменить вольфрамовую нить скрученной в тонкую спираль, что позволило уменьшить габариты стеклянной колбы, улучшить режим работы лампы и увеличить светоотдачу.

Устройство . Современная лампа накаливания, несмотря на кажущуюся простоту, на самом деле воплощает в себе множество изобретений и открытий. Для изготовления спирали накаливания в настоящее время кроме дорогостоящего вольфрама используют осмий или их соединение. Колба перестала быть просто вакуумной – очень часто ее стали заполнять инертным газом (аргон, криптон, ксенон и).

Подобное решение позволило устранить давление атмосферы на вакуумированную колбу, а также увеличить суммарную продолжительность работы лампы. Дело в том, что электрический ток, проходящий по вольфрамовой спирали, вызывает ее нагрев и свечение. При нагреве до столь высоких температур (до 2900°С) в безвоздушной колбе вольфрам начинает интенсивно испаряться и оседать на стекле. Стекло постепенно теряет прозрачность, и интенсивность светоотдачи уменьшается, а продолжительность работы нити падает.

Все мы знаем, как неприятно смотреть на яркий свет прозрачной лампы накаливания, поэтому промышленностью выпускаются не только прозрачные колбы, но и матовые. Благодаря этому, свет получается немного рассеянным и более мягким, хотя при этом незначительно теряет в интенсивности.

Выбор качественной лампы накаливания – не такая простая задача, как может показаться на первый взгляд. У многих в домах до сих пор горят лампочки с пятилетним и более стажем работы, а бывает, что совсем недавно купленная лампа перегорает. Устройство обыкновенной лампы накаливания показано на рисунке:

где: 1 - стеклянная колба; 2 - наполненная инертным газом полость колбы; 3 - спираль накаливания; 4, 5 - электроды; 6 - дополнительные опоры спирали; 7 - стеклянная ножка; 8 - внешний токопровод; 9 - цоколь; 10 - изолятор цоколя; 11 - нижний контакт цоколя.

Выбор лампы накаливания . При покупке лампы следует проверить стекло колбы на наличие посторонних вкраплений, так как только в этом случае обеспечивается его достаточная прочность. При должной практике качество используемого стекла можно проверить легким постукивание по нему фалангой пальца – звук должен быть немного приглушенным, «прочным». На металлическом цоколе не должно быть повреждений – отверстий или вмятин.

Наличие небольшого отверстия на цоколе еще не означает полной неработоспособности лампы, но заставляет задуматься о правильности процессов производства или транспортировки. Нижний контакт цоколя может быть широким – с диаметром около 7 мм, а может – узким 5 мм. Широкий контакт более предпочтителен, так как обеспечивает качественный контакт в патроне даже при небольшом смещении внутренней контактной пластины (язычка).

Однако, большинство современных ламп поставляется именно с узкими нижними контактами, поэтому может сложиться ситуация, когда выбирать не из чего. Колба должна быть надежно закреплена с патроном и не отставать в местах приклеивания. Внешний токопровод (8) может соединяться с цоколем либо обычной пайкой, либо точечной сваркой.

Пайка должна быть небольшой и аккуратной, а при сварке – крепко держаться. Спираль накаливания (3) не должна слишком провисать. Если такое происходит, значит, лампа уже эксплуатировалась и спираль немного растянулась. Очень важным моментом является осмотр качества обжима спирали в местах соединения с ней электродов (4, 5).

При недостаточном обжиме срок службы лампы существенно снижается. У качественных ламп ножка (7) сбоку не имеет отверстий. Указанное рабочее напряжение должны быть выше, чем фактическое. То есть, несмотря на стандарт 220 В., выгоднее выбирать лампы с на 230-240 В. Особо следует отметить, что завышенное свыше 240 В. напряжение резко сокращает срок службы лампы.

Нередко бывает так, что используемое в быту устройство, имеющее большое значение для всего человечества, ничем не напоминает нам о его создателе. А ведь в наших домах зажглась благодаря усилиям конкретных людей. Их заслуга для человечества неоценима - наши дома наполнились светом и теплом. История представленная ниже, познакомит вас с этим великим изобретением и с именами тех, с кем оно связано.

Что касается последних, можно отметить два имени - Александра Лодыгина и Томаса Эдисона. Хотя заслуга русского ученого была очень велика, пальма первенства принадлежит именно американскому изобретателю. Поэтому мы вкратце расскажем о Лодыгине и подробно остановимся на достижениях Эдисона. Именно с их именами связывается история ламп накаливания. Говорят, что на лампочки у Эдисона ушло огромное количество времени. Ему пришлось провести около 2 тысяч опытов, прежде чем на свет появилась знакомая нам всем конструкция.

Изобретение, сделанное Александром Лодыгиным

История ламп накаливания очень похожа на истории других сделанных в России изобретений. Александр Лодыгин, русский ученый, смог заставить угольный стержень светиться в стеклянном сосуде, откуда был откачан воздух. История создания лампы накаливания начинается в 1872 году, когда ему удалось это сделать. Александр получил патент на электрическую угольную лампу накаливания в 1874 году. Немного позже он предложил заменить вольфрамовым угольный стержень. Вольфрамовая деталь и сейчас используется в лампах накаливания.

Заслуга Томаса Эдисона

Однако именно американский изобретатель, смог создать долговечную, надежную и недорогую модель в 1878 году. Кроме того, ему удалось наладить ее производство. В его первых лампах в роли нити накаливания была обугленная стружка, сделанная из японского бамбука. Вольфрамовые нити, привычные нам, появились значительно позже. Они стали использоваться по инициативе Лодыгина, упоминавшегося выше русского инженера. Не будь его, кто знает, как сложилась бы история ламп накаливания дальнейших лет.

Американский менталитет Эдисона

Существенно отличается от русского. У гражданина США Томаса Эдисона в дело шло все. Интересно, что, размышляя о том, как сделать более прочной телеграфную ленту, этот ученый изобрел вощение бумаги. Затем эта бумага использовалась в виде обертки для конфет. Семь столетий западной истории предшествовали изобретению Эдисона, и не столько развитием технической мысли, сколько постепенно формировавшимся у людей активным отношением к жизни. Многие талантливые ученые упорно шли к этому изобретению. История происхождения лампы накаливания связана, в частности, с именем Фарадея. Он создал фундаментальные труды по физике, без опоры на которые вряд ли было бы осуществимо изобретение Эдисона.

Другие изобретения, сделанные Эдисоном

Томас Эдисон появился на свет в 1847 году в Порт-Херон, небольшом американском городке. В самореализации Томаса сыграло роль то, что молодой изобретатель обладал способностью мгновенно находить инвесторов для своих идей, даже самых дерзких. И они были готовы рискнуть немалыми суммами. Например, еще будучи подростком, Эдисон решил печатать газету в поезде во время движения и затем продавать ее пассажирам. А новости для газеты следовало собирать прямо на остановках. Сразу же нашлись люди, которые ссудили деньги на покупку небольшого печатного станка, а также те, которые пустили Эдисона в багажный вагон с этим станком.

Изобретения до Томаса Эдисона делались либо учеными и были побочным продуктом осуществленных ими открытий, либо практиками, которые совершенствовали то, с чем им приходилось работать. Именно Эдисон сделал изобретательство отдельной профессией. У него было множество идей, и практически каждая из них делалась ростком для последующих, которые требовали дальнейшей разработки. Томас в течение всей своей долгой жизни не заботился о своем личном комфорте. Известно, что, когда он посетил Европу, будучи уже в зените славы, то был разочарован ленью и щеголеватостью европейских изобретателей.

Сложно было найти область, в которой Томас не совершил бы прорыв. Подсчитано, что этот ученый ежегодно делал около 40 крупных открытий. В общей сложности Эдисон получил 1092 патента.

Дух американского капитализма толкал вверх Томаса Эдисона. Ему удалось разбогатеть еще в возрасте 22 лет, когда он придумал котировочный "тиккер" для бостонской биржи. Однако самым важным изобретением Эдисона было именно создание лампы накаливания. Томасу удалось с ее помощью электрифицировать всю Америку, а затем и весь мир.

Строительство электростанции и первые потребители электроэнергии

История создания лампы начинается со строительства небольшой электростанции. Ученый соорудил ее у себя в Менло-Парке. Она должна была обслуживать нужды его лаборатории. Однако получаемой энергии оказалось больше, чем было необходимо. Тогда Эдисон начал продавать излишек соседям-фермерам. Вряд ли эти люди понимали, что стали первыми платными потребителями электроэнергии в мире. Эдисон никогда не стремился стать предпринимателем, однако когда он нуждался для своей работы в чем-либо, он открывал небольшое производство в Менло-Парке, впоследствии разраставшееся до больших размеров и шедшее своим путем развития.

История изменения устройства лампы накаливания

Электрическая лампа накаливания представляет собой источник света, где преобразование в световую энергию электрической происходит из-за накаливания тугоплавкого проводника электрическим током. Световая энергия впервые была получена таким способом при пропускании тока сквозь угольный стержень. Этот стержень был помещен в сосуд, из которого предварительно был откачан воздух. Томас Эдисон в 1879 году создал более-менее долговечную конструкцию с использованием угольной нити. Однако имеется довольно длительная история возникновения лампы накаливания в современном виде. В качестве тела накала в 1898-1908 гг. пытались применять разные металлы (тантал, вольфрам, осмий). Вольфрамовую нить, зигзагообразно расположенную, начали использовать с 1909 года. Лампы накаливания начали наполнять в 1912-13 гг. (криптоном и аргоном), а также азотом. В это же время вольфрамовую нить стали делать в виде спирали.

История развития лампы накаливания далее отмечена ее усовершенствованием путем улучшения световой отдачи. Это осуществлялось с помощью повышения температуры тела накала. Срок службы лампы при этом сохранялся. Заполнение ее инертными высокомолекулярными газами с добавлением галогена привело к уменьшению загрязнения колбы частицами вольфрама, распыляющегося внутри нее. Кроме того, это уменьшило скорость его испарения. Применение тела накала в виде биспирали и триспирали привело к сокращению теплопотерь через газ.

Такова история изобретения лампы накаливания. Наверняка вам интересно будет узнать и о том, что представляют собой различные ее разновидности.

Современные разновидности ламп накаливания

Множество разновидностей электрических ламп состоит из определенных однотипных частей. Они различаются формой и размерами. На металлическом или стеклянном штенгеле внутри колбы закреплено тело накала (то есть сделанная из вольфрама спираль) с помощью держателей, выполненных из молибденовой проволоки. К концам вводов прикреплены концы спирали. Для того чтобы создать вакуумноплотное соединение с лопаткой, выполненной из стекла, средняя часть вводов выполняется из молибдена или платинита. Колба лампы во время вакуумной обработки наполняется инертным газом. Затем штенгель заваривается и образуется носик. Лампа для крепления в патроне и защиты носика снабжается цоколем. Он прикрепляется цоколевочной мастикой к колбе.

Внешний вид ламп

Сегодня существует множество накаливания, которые можно разделить по областям применения (для автомобильных фар, общего назначения и др.), по светотехническим свойствам их колбы или по конструктивной форме (декоративные, зеркальные, с рассеивающим покрытием и др.), а также по форме, которую имеет тело накала (с биспиралью, с плоской спиралью и др.). Что касается габаритов, выделяют крупногабаритные, нормальные, малогабаритные, миниатюрные и сверхминиатюрные. Например, к последним относятся лампы, имеющие длину менее 10 мм, диаметр которых не превышает 6 мм. Что касается крупногабаритных, к ним принадлежат такие, длина которых составляет более 175 мм, а диаметр - не менее 80 мм.

Мощность ламп и срок службы

Современные лампы накаливания могут работать при напряжении от долей единицы до нескольких сотен вольт. Их мощность может составлять десятки киловатт. Если увеличить напряжение на 1 %, световой поток повысится на 4 %. Однако при этом срок службы сократится на 15 %. Если включить лампу на короткий срок на напряжение, которое превышает на 15 % номинальное, она будет выведена из строя. Именно поэтому так часто перепады напряжения вызывают перегорание лампочек. От пяти часов до тысячи и более колеблется срок их службы. Например, на короткое время рассчитаны самолетные фарные лампы, а транспортные могут работать очень долго. В последнем случае их следует устанавливать в местах, которые обеспечивают легкость замены. Сегодня световая отдача ламп зависит от напряжения, конструкции, продолжительности горения и мощности. Она составляет около 10-35 лм/Вт.

Лампы накаливания сегодня

Лампы накаливания по своей световой отдаче, безусловно, проигрывают источникам света, работающим от газа (люминесцентная лампа). Тем не менее они проще в эксплуатации. Для ламп накаливания не требуется сложной арматуры или пусковых устройств. По мощности и напряжению для них практически не существует ограничений. В мире сегодня каждый год производится около 10 млрд ламп. А число их разновидностей превышает 2 тысячи.

Светодиодные лампы

История происхождения лампы уже написана, тогда как история развития этого изобретения еще не завершена. Появляются новые разновидности, которые становятся все более популярными. Речь идет в первую очередь о светодиодных лампах (одна из них представлена на фото выше). Они известны также как энергосберегающие. Эти лампы обладают светоотдачей, превышающей более чем в 10 раз светоотдачу ламп накаливания. Однако у них имеется недостаток - источник питания должен быть низковольтным.

Лампа накаливания

Ла́мпа нака́ливания - электрический источник света , в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный или заполненный инертным газом сосуд, нагревается до высокой температуры за счёт протекания через него электрического тока, в результате чего излучает в широком спектральном диапазоне, в том числе видимый свет. В качестве тела накала в настоящее время используется в основном спираль из сплавов на основе вольфрама .

Принцип действия

В лампе используется эффект нагревания проводника (тела накаливания) при протекании через него электрического тока (тепловое действие тока ). Температура тела накала резко возрастает после включения тока. Тело накала излучает электромагнитное тепловое излучение в соответствии с законом Планка . Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов. При температуре 5770 (температура поверхности Солнца) свет соответствует спектру Солнца. Чем меньше температура, тем меньше доля видимого света, и тем более «красным» кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводимости и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение . Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити - температурой плавления . Температура в 5771 К недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления - вольфрам (3410 °C) и, очень редко, осмий (3045 °C).

Для оценки данного качества света используется цветовая температура . При типичных для ламп накаливания температурах 2200-3000 K излучается желтоватый свет, отличный от дневного. В вечернее время «тёплый» (< 3500 K) свет более комфортен и меньше подавляет естественную выработку мелатонина , важного для регуляции суточных циклов организма и нарушение его синтеза негативно сказывается на здоровье.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид . По этой причине тело накала помещено в колбу, из которой в процессе изготовления лампы откачивается воздух. Первые изготавливали вакуумными; в настоящее время только лампы малой мощности (для ламп общего назначения - до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом , аргоном или криптоном). Повышенное давление в колбе газонаполненных ламп резко уменьшает скорость испарения вольфрама, благодаря чему не только увеличивается срок службы лампы, но и есть возможность повысить температуру тела накаливания, что позволяет повысить КПД и приблизить спектр излучения к белому. Колба газонаполненной лампы не так быстро темнеет за счёт осаждения материала тела накала, как у вакуумной лампы.

Конструкция

Конструкция современной лампы. На схеме: 1 - колба; 2 - полость колбы (вакуумированная или наполненная газом); 3 - тело накала; 4, 5 - электроды (токовые вводы); 6 - крючки-держатели тела накала; 7 - ножка лампы; 8 - внешнее звено токоввода, предохранитель; 9 - корпус цоколя; 10 - изолятор цоколя (стекло); 11 - контакт донышка цоколя.

Конструкции ламп накаливания весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

В конструкции ламп общего назначения предусматривается предохранитель - звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы - как правило, в ножке. Назначение предохранителя - предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга , которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. Из-за малой эффективности в настоящее время отказались от их применения.

Колба

Колба защищает тело накала от воздействия атмосферных газов. Размеры колбы определяются скоростью осаждения материала тела накала.

Газовая среда

Колбы первых ламп были вакуумированы. Большинство современных ламп наполняются химически инертными газами (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа с большой молярной массой. Смеси азота N 2 с аргоном Ar являются наиболее распространёнными в силу малой себестоимости, также применяют чистый осушенный аргон, реже - криптон Kr или ксенон Xe (молярные массы : N 2 - 28,0134 /моль ; Ar: 39,948 г/моль; Kr - 83,798 г/моль; Xe - 131,293 г/моль).

Галогенная лампа

Тело накала первых ламп изготавливалось из угля (температура возгонки 3559 °C). В современных лампах применяются почти исключительно спирали из вольфрама , иногда осмиево -вольфрамового сплава . Для уменьшения размеров тела накала ему обычно придаётся форма спирали, иногда спираль подвергают повторной или даже третичной спирализации, получая соответственно биспираль или триспираль. КПД таких ламп выше за счёт уменьшения теплопотерь из-за конвекции (уменьшается толщина ленгмюровского слоя).

Электротехнические параметры

Лампы изготавливают для различных рабочих напряжений . Сила тока определяется по закону Ома (I=U/R ) и мощность по формуле P=U·I , или P=U²/R . Т. к. металлы имеют малое удельное сопротивление , для достижения такого сопротивления необходим длинный и тонкий провод. Толщина провода в обычных лампах составляет 40-50 микрон .

Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении протекает очень большой ток (в десять - четырнадцать раз больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу - при нагревании их сопротивление уменьшалось, и свечение медленно нарастало. Возрастающая характеристика сопротивления нити накала (при увеличении тока сопротивление растет) позволяет использовать лампу накаливания в качестве примитивного стабилизатора тока . При этом лампа включается в стабилизируемую цепь последовательно, а среднее значение тока выбирается таким, чтобы лампа работала вполнакала.

В мигающих лампах последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампы самостоятельно работают в мерцающем режиме.

Цоколь

В США и Канаде используются иные цоколи (это частично обусловлено иным напряжением в сетях - 110 В, поэтому иные размеры цоколей предотвращают случайное ввинчивание европейских ламп, рассчитанных на иное напряжение): Е12 (candelabra), Е17 (intermediate), Е26 (standard или medium), Е39 (mogul) . Также, аналогично Европе, встречаются цоколи без резьбы.

Номенклатура

По функциональному назначению и особенностям конструкции лампы накаливания подразделяют на:

  • лампы общего назначения (до середины 1970-х годов применялся термин «нормально-осветительные лампы»). Самая массовая группа ламп накаливания, предназначенных для целей общего, местного и декоративного освещения. Начиная с 2008 года за счёт принятия рядом государств законодательных мер, направленных на сокращение производства и ограничение применения ламп накаливания с целью энергосбережения, их выпуск стал сокращаться;
  • декоративные лампы , выпускаемые в фигурных колбах. Наиболее массовыми являются свечеобразные колбы диаметром ок. 35 мм и сферические диаметром около 45 мм;
  • лампы местного освещения , конструктивно аналогичные лампам общего назначения, но рассчитанные на низкое (безопасное) рабочее напряжение - 12, 24 или 36 (42) В. Область применения - ручные (переносные) светильники, а также светильники местного освещения в производственных помещениях (на станках, верстаках и т. п., где возможен случайный бой лампы);
  • иллюминационные лампы , выпускаемые в окрашенных колбах. Назначение - иллюминационные установки различных типов. Как правило, лампы этого вида имеют малую мощность (10-25 Вт). Окрашивание колб обычно производится за счёт нанесения на их внутреннюю поверхность слоя неорганического пигмента. Реже используются лампы с колбами, окрашенными снаружи цветными лаками (цветным цапонлаком), их недостаток - быстрое выцветание пигмента и осыпание лаковой плёнки из-за механических воздействий;
  • зеркальные лампы накаливания имеют колбу специальной формы, часть которой покрыта отражающим слоем (тонкая плёнка термически распылённого алюминия). Назначение зеркализации - пространственное перераспределение светового потока лампы с целью наиболее эффективного его использования в пределах заданного телесного угла. Основное назначение зеркальных ЛН - локализованное местное освещение;
  • сигнальные лампы используются в различных светосигнальных приборах (средствах визуального отображения информации). Это лампы малой мощности, рассчитанные на длительный срок службы. Сегодня вытесняются светодиодами;
  • транспортные лампы - чрезвычайно широкая группа ламп, предназначенных для работы на различных транспортных средствах (автомобилях, мотоциклах и тракторах, самолётах и вертолётах, локомотивах и вагонах железных дорог и метрополитенов, речных и морских судах). Характерные особенности: высокая механическая прочность, вибростойкость, использование специальных цоколей, позволяющих быстро заменять лампы в стеснённых условия и, в то же время, предотвращающих самопроизвольное выпадение ламп из патронов. Рассчитаны на питание от бортовой электрической сети транспортных средств (6-220 В);
  • прожекторные лампы обычно имеют большую мощность (до 10 кВт, ранее выпускались лампы до 50 кВт) и высокую световую отдачу. Используются в световых приборах различного назначения (осветительных и светосигнальных). Спираль накала такой лампы обычно уложена за счет особой конструкции и подвески в колбе более компактно для лучшей фокусировки;
  • лампы для оптических приборов , к числу которых относятся и выпускавшиеся массово до конца XX в. лампы для кинопроекционной техники, имеют компактно уложенные спирали, многие помещаются в колбы специальной формы. Используются в различных приборах (измерительные приборы, медицинская техника и т. п.);

Специальные лампы

Коммутаторная лампа накаливания (24В 35мА)

История изобретения

Лампа Лодыгина

Лампа Томаса Эдисона с нитью накала из угольного волокна.

  • В 1809 году англичанин Деларю строит первую лампу накаливания (с платиновой спиралью) .
  • В 1838 году бельгиец Жобар изобретает угольную лампу накаливания.
  • В 1854 году немец Генрих Гёбель разработал первую «современную» лампу: обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой.
  • В 1860 год английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно.
  • 11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.
  • В 1875 году В. Ф. Дидрихсон усовершенствовал лампу Лодыгина, осуществив откачку воздуха из неё и применив в лампе несколько волосков (в случае перегорания одного из них, следующий включался автоматически).
  • Английский изобретатель Джозеф Уилсон Суон получил в 1878 году британский патент на лампу с угольным волокном. В его лампах волокно находилось в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.
  • Во второй половине 1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу, в которой он пробует в качестве нити различные металлы. В 1879 году он патентует лампу с платиновой нитью. В 1880 году он возвращается к угольному волокну и создаёт лампу с временем жизни 40 часов. Одновременно Эдисон изобрёл бытовой поворотный выключатель . Несмотря на столь непродолжительное время жизни его лампы вытесняют использовавшееся до тех пор газовое освещение.
  • В 1890-х годах А. Н. Лодыгин изобретает несколько типов ламп с нитями накала из тугоплавких металлов . Лодыгин предложил применять в лампах нити из вольфрама (именно такие применяются во всех современных лампах) и молибдена и закручивать нить накаливания в форме спирали. Он предпринял первые попытки откачивать из ламп воздух, что сохраняло нить от окисления и увеличивало их срок службы во много раз . Первая американская коммерческая лампа с вольфрамовой спиралью впоследствии производилась по патенту Лодыгина. Также им были изготовлены и газонаполненные лампы (с угольной нитью и заполнением азотом) .
  • С конца 1890-х годов появились лампы с нитью накаливания из окиси магния, тория, циркония и иттрия (лампа Нернста) или нить из металлического осмия (лампа Ауэра) и тантала (лампа Больтона и Фейерлейна)
  • В 1904 году венгры Д-р Шандор Юст и Франьо Ханаман получили патент за № 34541 на использование в лампах вольфрамовой нити. В Венгрии же были произведены первые такие лампы, вышедшие на рынок через венгерскую фирму Tungsram в 1905 году .
  • В 1906 году Лодыгин продаёт патент на вольфрамовую нить компании General Electric . В том же 1906 году в США он построил и пустил в ход завод по электрохимическому получению вольфрама, хрома, титана. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.
  • В 1910 году Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.
  • Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным, известным специалистом в области вакуумной техники Ирвингом Ленгмюром , который, работая с 1909 года в фирме «General Electric», ввёл в производство наполнение колбы ламп инертными , точнее - тяжёлыми благородными газами (в частности - аргоном), что существенно увеличило время их работы и повысило светоотдачу.

КПД и долговечность

Долговечность и яркость в зависимости от рабочего напряжения

Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 своего максимального значения 15 %. При практически достижимых температурах в 2700 (обычная лампа на 60 Вт) КПД составляет 5 %.

С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 время жизни лампы составляет примерно 1000 часов, при 3400 всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95 %.

Уменьшение напряжения питания хотя и понижает КПД , но зато увеличивает долговечность. Так понижение напряжения в два раза (напр. при последовательном включении) уменьшает КПД примерно в 4-5 раз, но зато увеличивает время жизни почти в тысячу раз. Этим эффектом часто пользуются, когда необходимо обеспечить надёжное дежурное освещение без особых требований к яркости, например, на лестничных площадках. Часто для этого при питании переменным током лампу подключают последовательно с диодом , благодаря чему ток в лампу идет только в течение половины периода.

Так как стоимость потребленной за время службы лампой накаливания электроэнергии в десятки раз превышает стоимость самой лампы, существует оптимальное напряжение, при котором стоимость светового потока минимальна. Оптимальное напряжение несколько выше номинального, поэтому способы повышения долговечности путем понижения напряжения питания с экономической точки зрения абсолютно убыточны.

Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается, и лампа выходит из строя.

Наибольший износ нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно используя разного рода устройства плавного запуска.

Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт , а 100-ваттная - более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной.

Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности, диммеры (автоматические или ручные). Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.

Низковольтные лампы накаливания при той же мощности имеют больший ресурс и светоотдачу благодаря большему сечению тела накаливания. Поэтому в многоламповых светильниках (люстрах) целесообразно применение последовательного включения ламп на меньшее напряжение вместо параллельного включения ламп на напряжение сети. Например, вместо параллельно включенных шести ламп 220В 60Вт применить шесть последовательно включенных ламп 36 В 60Вт, то есть заменить шесть тонких спиралей одной толстой.

Тип Относительная световая отдача Световая отдача (Люмен /Ватт)
Лампа накаливания 40 Вт 1,9 % 12,6
Лампа накаливания 60 Вт 2,1 % 14,5
Лампа накаливания 100 Вт 2,6 % 17,5
Галогенные лампы 2,3 % 16
Галогенные лампы (с кварцевым стеклом) 3,5 % 24
Высокотемпературная лампа накаливания 5,1 % 35
Абсолютно чёрное тело при 4000 K 7,0 % 47,5
Абсолютно чёрное тело при 7000 K 14 % 95
Идеально белый источник света 35,5 % 242,5
Идеальный монохроматический 555 nm (зелёный) источник 100 % 683

Ниже представлено приблизительное соотношение мощности и светового потока для обычных прозрачных ламп накаливания в форме "груши", популярных в России, цоколь E27, 220В.

Разновидности ламп накаливания

Лампы накаливания делятся на (расположены по порядку возрастания эффективности):

  • Вакуумные (самые простые)
  • Аргоновые (азот-аргоновые)
  • Криптоновые (примерно +10% яркости от аргоновых)
  • Ксеноновые (в 2 раза ярче аргоновых)
  • Галогенные (наполнитель I или Br, в 2,5 раза ярче аргоновых, большой срок службы, не любят недокала, так как не работает галогенный цикл)
  • Галогенные с двумя колбами (более эффективный галогенный цикл за счёт лучшего нагрева внутренней колбы)
  • Ксенон-галогенные (наполнитель Xe + I или Br, наиболее эффективный наполнитель, до 3х раз ярче аргоновых)
  • Ксенон-галогенные с отражателем ИК излучения (так как большая часть излучения лампы приходится на ИК диапазон, то отражение ИК излучения внутрь лампы заметно повышает КПД, производятся для охотничьих фонарей)
  • Накаливания с покрытием преобразующим ИК излучение в видимый диапазон. Ведутся разработки ламп с высокотемпературным люминофором, который при нагреве излучает видимый спектр.

Преимущества и недостатки ламп накаливания

Преимущества:

  • налаженность в массовом производстве
  • малая стоимость
  • небольшие размеры
  • отсутствие пускорегулирующей аппаратуры
  • нечувствительность к ионизирующей радиации
  • чисто активное электрическое сопротивление (единичный коэффициент мощности)
  • быстрый выход на рабочий режим
  • невысокая чувствительность к сбоям в питании и скачкам напряжения
  • отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации
  • возможность работы на любом роде тока
  • нечувствительность к полярности напряжения
  • возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)
  • отсутствие мерцания при работе на переменном токе (важно на предприятиях).
  • отсутствие гудения при работе на переменном токе
  • непрерывный спектр излучения
  • приятный и привычный в быту спектр
  • устойчивость к электромагнитному импульсу
  • возможность использования регуляторов яркости
  • не боятся низкой и повышенной температуры окружающей среды, устойчивы к конденсату

Недостатки:

Ограничения импорта, закупок и производства

В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу во многих странах введён или планируется к вводу запрет на производство, закупку и импорт ламп накаливания с целью вынуждения замены их на энергосберегающие (компактные люминесцентные , светодиодные , индукционные и др.) лампы.

В России

По некоторым источникам в 1924 году между участниками картеля была достигнута договорённость об ограничении времени жизни ламп накаливания в 1000 часов. При этом все производители ламп, состоящие в картеле, были обязаны вести строгую техническую документацию по соблюдению мер, предотвращающих 1000-часовое превышение цикла жизни ламп.

Кроме того картелем были разработаны ныне действующие стандарты цоколя Эдисона .

См. также

Примечания

  1. Лампы с белыми LED подавляют выработку мелатонина - Газета.Ru | Наука
  2. Buy Tools, Lighting, Electrical and DataComm Supplies at GoodMart.com
  3. Фотолампа // Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. - М .: Советская энциклопедия , 1981.
  4. Е. М. Голдовский. Советская кинотехника. Издательство Академии Наук СССР, Москва-Ленинград. 1950, C. 61
  5. История изобретения и развития электрического освещения
  6. Давид Шарле. Король изобретательства Томас Альва Эдисон
  7. Электротехническая энциклопедия. История изобретения и развития электрического освещения
  8. A. de Lodyguine, U.S. Patent 575,002 «Illuminant for Incandescent Lamps». Application on January 4, 1893 .
  9. Г.С.Ландсберг. Элементарный учебник физики (рус.) . Архивировано из первоисточника 1 июня 2012. Проверено 15 апреля 2011.
  10. en:Incandescent light bulb
  11. [ Лампа накаливания] - статья из Малого энциклопедического словаря Брокгауза и Ефрона
  12. The History of Tungsram (PDF). Архивировано (англ.)
  13. Ganz and Tungsram - the 20th century (англ.) .(недоступная ссылка - история ) Проверено 4 октября 2009.
  14. А. Д. Смирнов, К. М. Антипов. Справочная книга энергетика. Москва, "Энергоатомиздат", 1987.
  15. Keefe, T.J. The Nature of Light (2007). Архивировано из первоисточника 1 июня 2012. Проверено 5 ноября 2007.
  16. Klipstein, Donald L. The Great Internet Light Bulb Book, Part I (1996). Архивировано из первоисточника 1 июня 2012. Проверено 16 апреля 2006.
  17. Black body visible spectrum
  18. See luminosity function.
  19. Лампы накаливания, характеристики . Архивировано из первоисточника 1 июня 2012.
  20. Таубкин С. И. Пожар и взрыв, особенности их экспертизы - М., 1999 с. 104
  21. 1 сентября в ЕС прекратится продажа 75-ваттных ламп накаливания.
  22. ЕС ограничивает продажу ламп накаливания с 1 сентября, европейцы недовольны. «Интерфакс-Украина».
  23. Медведев предложил запретить «лампочки Ильича» , Lenta.ru, 02.07.2009.
  24. Федеральный закон Российской Федерации от 23 ноября 2009 года № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации».
  25. Саботируй вето, Lenta.ru, 28.01.2011.
  26. «Лисма» приступила к выпуску новой серии ламп накаливания, ГУП РМ «ЛИСМА».
  27. Голь на выдумки хитра: в продаже появились лампы накаливания мощностью 95Вт, ЭнергоВОПРОС.ру.
  28. http://russeca.kent.edu/InternationalBusiness/Chapter09/t09p23.html Ограничительная деловая практика в области передачи технологии (ОДП)

Электрическая лампочка накаливания является очень важным предметом в жизни человека. С помощью нее миллионы людей могут заниматься делами независимо от времени суток. В то же время прибор очень прост в исполнении: свет испускается специальной нитью накала внутри стеклянного сосуда, из которого откачан воздух, а в ряде случаев заменен на специальный газ. Нить накала выполнена из проводника с высокой температурой плавления, что делает возможным нагрев с помощью тока до видимого свечения.

Лампа накаливания общего назначения (230 В, 60 Вт, 720 лм, цоколь E27, габаритная высота ок. 110 мм

Как работает лампочка накаливания

Метод работы данного устройства так же прост, как и исполнение. Под воздействием электричества, пропускаемого сквозь тугоплавкий проводник, последний разогревается до большой температуры. Температура нагрева определяется подводимым к лампочке напряжением.

Следуя закону Планка нагретый проводник генерирует электромагнитное излучение. По формуле при смене температуры меняется и максимум излучения. Чем больше нагрев, тем короче длина волны испускаемого света. Другими словами, от величины температуры проводника накала в лампочке зависит цвет свечения. Длина волны видного спектра достигается при нескольких тысячах градусов по Кельвину. К слову, температура Солнца около 5000 Кельвин. Лампа с такой цветовой температурой будет светить дневным нейтральным светом. При уменьшении нагрева проводника излучение станет желтеть, затем краснеть.

В лампочке только доля энергии переходит в видный свет, остальная же преобразуется в тепло. Причем только часть светового излучения видна человеку, остальное же излучение является инфракрасным. Отсюда возникает потребность повышения температуры излучающего проводника, чтобы видимого света стало больше, а инфракрасного излучения – меньше (другими словами, увеличение КПД). Но максимальная температура проводника накаливания ограничена характеристиками проводника, что не позволяет разогреть ее до 5770 Кельвин.

Проводник из любого вещества при этом будет расплавляться, деформироваться или перестанет проводить ток. В настоящее время лампочки оснащаются вольфрамовыми нитями накаливания, выдерживающими 3410 градусов по Цельсию.
Одним из главных свойств лампы накаливания является температура свечения. Чаще всего она составляет от 2200 до 3000 Кельвин, что позволяет испускать только желтый свет, а не дневной белый.
Следует заметить, что на воздухе проводник из вольфрама при такой температуре сразу перейдет в оксид, во избежание чего нужно предотвратить контакт с кислородом. Для этого из колбы лампочки выкачивается воздух, чего хватает для создания 25-ваттных ламп. Более мощные лампочки содержат внутри себя инертный газ под давлением, что позволяет вольфраму служить дольше. Данная технология позволяет немного повысить температуру свечения лампы и приблизиться к дневному свету.

Устройство лампочки накаливания

Электрические лампочки немного различаются по конструкции, но к основным составляющим относятся нить излучающего проводника, стеклянный сосуд и выводы. У ламп специального назначения может не иметься цоколь, присутствовать иные держатели излучающего проводника, еще одна колба. В некоторых лампах накаливания также имеется предохранитель из ферроникеля, стоящий в разрыве одного из выводов.

Размещается предохранитель преимущественно в ножке. Благодаря ему колба не разрушается при обрыве излучающего проводника. При обрыве нити лампы появляется электрическая дуга, плавящая останки проводника. Расплавленное вещество проводника, попадая на стеклянную колбу, способно ее разрушить и спровоцировать возгорание. Предохранитель же разрушается от большого тока электрической дуги и прекращает плавление нити накала. Но ставить такие предохранители не стали ввиду малой эффективности.

Конструкция лампы накаливания: 1 - колба; 2 - полость колбы (вакуумированная или наполненная газом); 3 - тело накала; 4, 5 - электроды (токовые вводы); 6 - крючки-держатели тела накала; 7 - ножка лампы; 8 - внешнее звено токоввода, предохранитель; 9 - корпус цоколя; 10 - изолятор цоколя (стекло); 11 - контакт донышка цоколя.

Колба

Стеклянная колба лампы накаливания защищает излучающий проводник от окисления и разрушения. Размер колбы зависит от скорости осаждения материала проводника.

Газовая среда

Первые электрические лампочки выпускались с вакуумной колбой, в наше время так изготовлены только маломощные приборы. Лампы помощнее выпускаются наполненными инертным газом. От величины газовой молярной массы зависит излучение тепла проводником накаливания. Чаще всего в колбах находится смесь аргона и азота, но может быть и просто аргон, а также криптон и даже ксенон.

Молярные массы газов:

  • N2 - 28,0134 г/моль;
  • Ar: 39,948 г/моль;
  • Kr - 83,798 г/моль;
  • Xe - 131,293 г/моль;

Отдельно стоит рассмотреть галогенные лампы. В их сосуды закачиваются галогены. Вещество проводника накаливания испаряется и вступает в реакцию с галогенами. Получившиеся соединения при большой температуре вновь разлагаются и вещество возвращается на излучающий проводник. Это свойство позволяет увеличить температуру проводника, вследствие чего возрастает КПД и длительность работы лампы. Помимо этого, использование галогенов позволяет уменьшить размер колбы. Из минусов стоит отметить маленькое сопротивление проводника накала на старте.

Нить накала

Формы излучающего проводника бывают разные, в зависимости от специфики лампочки. Чаще всего в лампочках используется нить круглого сечения, но иногда может встретиться и ленточный проводник.
Первые лампочки выпускались даже с углем, нагревающимся до 3559 градусов по Цельсию. Современные лампочки комплектуются вольфрамовым проводником, иногда – осмиево-фольфрамовым. Вид спирали неслучаен – он существенно снижает габариты проводника накала. Существуют биспирали и триспирали, полученные методом повторного закручивания. Данные типы проводника накаливания делают возможным увеличение КПД за счет уменьшения теплоизлучения.

Свойства лампочки накаливания

Лампочки выпускаются для различных целей и мест установок, чем обусловлено их различие по напряжению цепи. Величина силы тока высчитывается по закону известного Ома (напряжение делим на сопротивление), а мощность с помощью несложной формулы: напряжение умножаем на ток или напряжение в квадрате делим на сопротивление. Для изготовления лампочки накаливания нужной мощности подбирается провод с необходимым сопротивлением. Обычно используется проводник толщиной 40-50 мкм.
При старте, то есть включении лампочки в сеть, происходит бросок тока (на порядок больше номинального). Это получается за счет низкой температуры нити накала. Ведь при комнатной температуре проводник имеет небольшое сопротивление. Ток снижается до номинального только при нагреве нити накала за счет увеличения сопротивления проводника. Что касается первых угольных ламп, то там было наоборот: холодная лампочка имела большее сопротивление, чем горячая.

Цоколь

Цоколь лампы накаливания имеет стандартизированные форму и размер. Благодаря этому возможна замена лампочки в люстре или другом приборе без проблем. Наиболее популярны цоколи лампочек с резьбой, имеющие маркировки E14, E27, E40. Цифры после буквы «Е» обозначает внешний диаметр цоколя. Существуют и цоколи лампочек без резьбы, удерживаемые в патроне силой трения или другими приспособлениями. Лампочки с цоколями Е14 чаще требуются при замене старых в люстрах или торшерах. Цоколь Е27 используется повсеместно – в патронах, люстрах, специальных приборах.
Обратите внимание, что в Америке напряжение цепи 110 вольт, поэтому они пользуются цоколями, отличными от европейских. В американских магазинах найдутся лампочки с цоколями Е12, Е17, Е26 и Е39. Сделано это затем, чтобы случайно не спутать европейскую лампочку, рассчитанную на 220 вольт и американскую на 110 вольт.

Коэффициент полезного действия

Энергия, подводимая к лампочке накаливания тратится не только на производство видного спектра света. Часть энергии тратится на испускание света, часть превращается в тепло, но самая большая доля тратится на инфракрасный свет, недоступный человеческому глазу. При температуре проводника накаливания 3350 Кельвин КПД лампочки всего 15%. А стандартная 60-ваттная лампа с температурой свечения 2700 Кельвин имеет КПД около 5%.
Естественно, КПД лампочки прямо зависит от степени нагрева излучающего проводника, но при более сильном нагреве нить не прослужит долго. При температуре проводника в 2700К лампочка будет светить около 1000 часов, а при нагреве до 3400К срок службы сокращается до нескольких часов. При поднятии напряжения питания лампы на 20% сила свечения увеличится примерно до 2 раз, а срок работы уменьшится аж до 95%.
Для повышения срока работы лампочки следует понизить напряжение питания, но с этим понизится и КПД прибора. При последовательном подключении лампочки накаливания будут работать до 1000 раз дольше, но их КПД окажется в 4-5 раз меньше. В некоторых случаях такой подход имеет смысл, к примеру, на лестничных пролетах. Большая яркость там не обязательна, а вот срок службы лампочек должен быть немалым.
Для достижения данной цели последовательно с лампочкой нужно включить диод. Полупроводниковый элемент позволит отсечь ток половины периода, протекающий по лампе. В результате мощность снижается наполовину, а за ней и напряжение снижается примерно в 1,5 раза.
Однако, такой способ подключения лампы накаливания невыгоден со стороны экономики. Ведь такая цепь будет потреблять больше электроэнергии, что делает выгоднее замену сгоревшей лампочки новой, нежели потраченные киловатт-часы на продление жизни старой. Поэтому для запитки лампочек накаливания подается напряжение, немного побольше номинального, что позволяет экономить электроэнергию.

Сколько служит лампа

Длительность эксплуатации лампы снижается многими факторами, например, испарением вещества с поверхности проводника или дефектами проводника накала. При разном испарении материала проводника появляются участки нити с большим сопротивлением, обуславливающим перегрев и еще интенсивнее испарение вещества. Нить накала под действием такого фактора истончается и местно целиком испаряется, чем обуславливается сгорание лампы.
Сильнее всего проводник накала изнашивается при запуске из-за броска тока. Во избежание этого применяются приборы плавного запуска лампы.
Вольфрам характеризуется удельным сопротивлением вещества в 2 раза большим, чем, например, алюминий. При подсоединении лампы в сеть ток, протекающий по ней, на порядок больше номинального. Броски тока и являются причиной перегорания лампочек накаливания. Для защиты цепи от бросков тока в лампочках иногда стоит предохранитель.

При внимательном рассмотрении электрической лампочки плавкий предохранитель виден более тонким проводником, идущим к цоколю. При включении в сеть обычной электрической 60-ваттной лампочки мощность нити накала может достигать 700 ватт и выше, а при включении 100-ваттной – более 1 киловатта. При нагреве излучающий проводник увеличивает сопротивление и мощность уменьшается до нормы.

Чтобы обеспечить плавный запуск лампы накаливания, можно воспользоваться терморезистором. Коэффициент температурного сопротивления такого резистора должен быть отрицателен. При включении в цепь терморезистор холодный и обладает большим сопротивлением, поэтому лампочка не получит полное напряжение до прогрева данного элемента. Это только основы, тема плавного подлючения лампочек накаливания огромная и требует более глубокого изучения.

Тип Относительная световая отдача % Световая отдача (Люмен/Ватт)
Лампа накаливания 40 Вт 1,9 % 12,6
Лампа накаливания 60 Вт 2,1 % 14,5
Лампа накаливания 100 Вт 2,6 % 17,5
Галогенные лампы 2,3 % 16
Галогенные лампы (с кварцевым стеклом) 3,5 % 24
Высокотемпературная лампа накаливания 5,1 % 35
Абсолютно чёрное тело при 4000 K 7,0 % 47,5
Абсолютно чёрное тело при 7000 K 14 % 95
Идеально белый источник света 35,5 % 242,5
Источник монохроматического зелёного света с длиной волны 555 нм 100 % 683

Благодаря таблице, которая приведена ниже, можно приблизительно узнать соотношение мощности и светового потока для обычной лампочки «груши» (цоколь E27, 220 В).

Мощность (Вт) Световой поток (лм) Световая отдача (лм/Вт)
200 3100 15,5
150 2200 14,6
100 1200 13,6
75 940 12,5
60 720 12
40 420 10,5
25 230 9,2
15 90 6

Какие бывают лампочки накаливания

Как упоминалось выше, из сосуда лампы накаливания откачан воздух. В некоторых случаях (например, при маленькой мощности) колбу так и оставляют вакуумной. Но гораздо чаще лампа наполнена специальным газом, который продляет длительность работы нити накаливания и улучшает светоотдачу проводника.
По типу заполнения сосуда лампочки делят на несколько видов:
Вакуумные (все первые лампочки и маломощные современные)
Аргоновые (в ряде случаев заполняются смесью аргон+азот)
Криптоновые (данный тип лампочек на 10% сильнее светит, чем вышеупомянутые лампы с аргоном)
Ксеноновые (в таком исполнении лампы светят уже в 2 раза сильнее, чем лампы с аргоном)
Галогеновые (в сосуды таких лампочек помещают йод, возможно, бром, позволяющие светить аж в 2,5 раза сильнее все тех же аргоновых. Данный тип лампочек является долговечным, но требует хорошего накала нити для работы цикла галогенов)
Ксенон-галогенные (такие лампы наполняют смесью ксенона с йодом или бромом, считающимся лучшим газом для лампочек, потому что светит такой источник в 3 раза ярче стандартной аргоновой лампы)
Ксенон-галогеновые с ИК отражателем (огромная доля свечения лампочек накаливания находится в ИК секторе. Отражая его обратно, можно существенно увеличить КПД лампы)
Лампы с проводником накаливания с преобразователем ИК излучения (на стекло колбы наносится спецлюминофор, излучающий при разогреве видный свет)

Плюсы и минусы ламп накаливания

Как и у прочих электроприборов, у лампочек существует масса плюсов с минусами. Именно поэтому часть людей пользуются данными источниками света, а другая часть сделала выбор в пользу более современных осветительных приборов.

Плюсы:

Хорошая цветопередача;
Масштабное налаженное производство;
Низкая стоимость изделия;
Небольшие размеры;
Простота исполнения без лишних узлов;
Стойкость к радиации;
Имеет только активное сопротивление;
Мгновенный пуск и перезапуск;
Стойкость к перепадам напряжения и сбоям в сети;
В составе нет химически вредных веществ;
Работа как от переменного, так и от постоянного тока;
Отсутствие полярности входов;
Возможно производство под любое напряжение;
Не мерцает от переменного тока;
Не гудит от переменного тока;
Полный световой спектр;
Привычный и удобный цвет свечения;
Стойкость к импульсам электромагнитного поля;
Возможно подключение регулировки яркости;
Свечение при заниженных и завышенных температурах, стойкость к образованию конденсата.

Минусы:

  • Заниженный световой поток;
    Короткая длительность работы;
    Чувствительность к дрожанию и ударам;
    Большой скачок тока при пуске (на порядок выше номинального);
    При разрыве проводника накала возможно разрушение колбы;
    Срок работы и поток света зависит от напряжения;
    Пожароопасность (полчаса свечения лампы накаливания разогревает ее стекло в зависимости от величины мощности: 25вт до 100 градусов по Цельсию, 40вт до 145 градусов, 100вт до 290 градусов, 200вт до 330 градусов. При контакте с тканью нагрев становится более интенсивным. 60- ваттная лампочка может, например, поджечь солому через час работы.);
    Необходимость термостойких патронов и крепежей лампы;
    Маленький КПД (соотношение силы видимого излучения к объему потребляемой электроэнергии);
    Несомненно, главным плюсом лампы накаливания становится ее низкая стоимость. С распространением люминесцентных и, тем более, светодиодных лампочек ее популярность существенно снизилась.

А знаете ли Вы как создаются лампы накаливания? Нет? Тогда вот вам ознакомительное видео от Discovery

И помните лампочка, засунутая в рот, назад не вылезет, поэтому не стоит этого делать. 🙂

Легендарные лампочки Ильича можно назвать классикой жанра, «динозаврами» источников освещения, т.к. патент на их создание был принят в далеком 1879 году. Далее мы рассмотрим основные технические характеристики ламп накаливания, виды, а также плюсы и минусы применения в быту.

Устройство лампы накаливания включает в себя стеклянную колбу, в которой находиться вольфрамовая нить и инертный газ (ксенон, криптон либо аргон). Нить установлена на специальных опорах и электродах, через которые проходит электрический ток (наглядно вы можете увидеть конструкцию на картинке выше). При вкручивании цоколя в патрон, электричество проходит к вольфрамовой нити, которая накаляется и излучает свет. В этом и заключается принцип действия лампочки.

Характеристика

Основные технические характеристики лампы накаливания:

  • диапазон мощностей — от 25 до 150 Вт (для бытового применения) до 1000 Вт;
  • температура накала вольфрамовой нити в пределах 3000 градусов;
  • световая отдача – от 9 до 19 Лм/ 1 Вт (к примеру, световой поток лампы накаливания 40 Вт может варьироваться от 415 до 460 Лм);
  • номинальное напряжение — 220-230 В и 127 В;
  • частота – 50 Гц;
  • размер цоколя – 14 мм (E14), 27 мм (E27) и 40 мм (E40);
  • ресурс работы или по простому срок службы – при нормальном напряжении около 1000 часов (220В) и 2500 часов (127 В);
  • цоколь – резьбовой, штифтовой одно- и двухконтактный.

Технические характеристики бытовых ламп накаливания:



С параметрами разобрались, теперь поговорим о разновидностях.

Разновидности

На сегодняшний день существует широкий ассортимент лампочек, которые разделяются по следующим признакам:

  • форма колбы (шарообразная, цилиндрическая, трубчатая, шароконическая и т.д.);
  • покрытие колбы (прозрачное, зеркальное, матовое);
  • назначение (общее, местное, кварцевогалогенные);
  • наполнитель колбы (вакуум, аргон, ксенон, криптон, галоген и т.д.).

Рассмотрим фото и характеристики наиболее популярных видов ламп накаливания.

Прозрачные наиболее распространенный вариант. Такие изделия самые дешевые и наименее эффективные, т.к. световой поток рассеивается неравномерно. Недостаток прозрачных колб в том, что свет «бьет» по глазам. Зеркальные колбы более эффективные, т.к. покрытие создает направленный световой поток. Такие изделия пользуются популярностью при освещении витрин и торговых залов. Матовые делают освещение более мягким и рассеянным, благодаря чему создаются благоприятные условия для работы и отдыха при включенном свете. Изделия местного освещения работают при напряжении 12-24-38 Вольт, что необходимо для создания безопасных условий труда. Такие источники света могут применяться для освещения смотровой ямы при .

Маркировка

Маркировка ламп накаливания имеет вид: Первая буквенная часть — особенность конструкции и физические свойства изделия (Б — аргоновая биспиральная, В – вакуумная, Г – газополная аргоновая моноспиральная, БК – биспиральная криптоновая, МЛ – в колбе молочного цвета, МТ – матовая колба, О – опаловая колба). Вторая буквенная часть — назначение изделия (Ж – железнодорожная, СМ – самолетная, КМ – коммутаторная, А – автомобильная, ПЖ – прожекторная). Первая цифирная часть – номинальное напряжение и мощность. Вторая цифирная часть – номер доработки. К примеру, маркировка Б235 – 245-60 означает, что изделие биспиральное, работает при напряжении 245 В и имеет мощность 60 Вт.

Достоинства

Главное преимущество ламп накаливания заключаются в наименьшей стоимости изделий, по сравнению с конкурентами (светодиодами, и т.д.). Помимо этого можно выделить еще ряд преимуществ, которые и являются причиной выбора данных источников света:

  • Могут нормально работать при низких температурах, благодаря чему применяются при .
  • При незначительных скачках напряжения изделие не выходит из строя.
  • Работают даже при очень низком напряжении (только вот интенсивность освещения снизится).
  • Разновидность и мощность изделий имеет широкий диапазон, благодаря чему можно выбрать подходящий под определенные условия эксплуатации продукт.
  • Могут нормально функционировать при повышенной влажности.
  • Подключаются к сети без дополнительного оборудования.
  • Превосходят газозарядные источники света по безопасности.