Введение

Потеря тепла зданием зависит от ряда причин. Чем больше разница между температурами наружного воздуха и воздуха помещения и чем больше площадь ограждающих конструкций, тем больше тепла теряет здание. Потеря тепла зданием зависит также от материала, из которого выполнена ограждающая конструкция, и ее размеров. Системы отопления должны возмещать израсходованное тепло:

Через ограждающие конструкции (стены, окна, двери, перекрытия верхних этажей, полы нижних этажей) зданий и сооружений;

На нагревание воздуха, поступающего через открываемые ворота, двери и другие проемы и неплотности в ограждающих конструкциях;

На нагревание поступающих извне материалов, оборудования и транспорта и на нагревание поступающего с ними воздуха, температура которого ниже расчетной температуры воздуха помещения.

Системы отопления зданий и сооружений должны обеспечивать: равномерный прогрев воздуха помещений, возможность регулирования самих систем отопления, увязку с системами вентиляции; удобство эксплуатации и ремонта. В системах отопления в качестве теплоносителя используют воду температурой не более 150°С, водяной пар температурой не более 130°С или воздух, нагретый до 60°С; соответствующие системы называют водяными, паровыми или воздушными.

Централизованные системы теплоснабжения

Централизованные системы теплоснабжения - системы теплоснабжения больших жилых массивов, городов, поселков и промышленных предприятий. Источниками теплоты у них служат теплоэнергоцентрали или крупные котельные, имеющие высокие КПД, транспортирующие и распределяющие теплоноситель по тепловым сетям протяженностью 10-15 км, с максимальным диаметром труб 1000-1400 мм, обеспечивающим подачу потребителям теплоносителя в требуемых количествах и с требуемыми параметрами. Мощность ТЭЦ составляет 1000-3000 МВт, котельных 100-500 МВт. Крупные централизованные системы теплоснабжения имеют несколько источников теплоты, связанных резервными тепломагистралями, обеспечивающими маневренность и надежность их функционирования. В централизованную систему теплоснабжения входят и системы теплоснабжения зданий, связанные с ней единым гидравлическим и тепловым режимами и общей системой управления. Однако ввиду многообразия технических решений теплоснабжения зданий их выделяют в самостоятельную техническую систему, называемую системой отопления. Поэтому центральная система теплоснабжения начинается источником теплоты и заканчивается абонентским вводом в здание.

Централизованные системы теплоснабжения бывают водяные и паровые. Основное преимущество воды как теплоносителя в значительно меньшем расходе энергии на транспортирование единицы теплоты в виде горячей воды, чем в виде пара, что обусловливается большей плотностью воды. Снижение расхода энергии дает возможность транспортировать воду на большие расстояния без существенной потери энергетического потенциала. В крупных системах температура воды понижается примерно на 1°С на пути в 1 км, тогда как давление пара (его энергетический потенциал) на том же расстоянии примерно на 0,1-0,15 МПа, что соответствует 5-10°С. Поэтому давление пара в отборах турбины у водяных систем ниже, чем у паровых, что приводит к сокращению расхода топлива на ТЭЦ. К другим достоинствам водяных систем относятся возможность центрального регулирования подачи теплоты потребителям путем изменения температуры теплоносителя и более простая эксплуатация системы (отсутствие конденсатоотводчиков, конденсатоп-роводов, конденсатных насосов).

К достоинствам пара следует отнести возможность удовлетворения и отопительных и технологических нагрузок, а также малое гидростатическое давление. Учитывая достоинства и недостатки теплоносителей, водяные системы используют для теплоснабжения жилых массивов, общественных и коммунальных зданий, предприятий, использующих горячую воду, а паровые - для промышленных потребителей, которым необходим водяной пар. Водяные централизованные системы теплоснабжения - основные системы, обеспечивающие теплоснабжение городов. Централизация теплоснабжения городов составляет 70-80%. В крупных городах с преимущественно современной застройкой уровень использования ТЭЦ в качестве источников теплоты для жилищно-коммунального сектора достигает 50-60%.

В теплофикационных системах пар высоких параметров (давление 13-24 МПа, температура 565°С), вырабатываемый в энергетических котлах, подается в турбины, где, проходя через лопатки, отдает часть своей энергии для получения электроэнергии. Основная часть пара проходит через отборы и поступает в теплофикационные теплообменники, в которых он нагревает теплоноситель системы теплоснабжения. Таким образом на ТЭЦ теплота высокого потенциала используется для выработки электроэнергии, а теплота низкого потенциала - для теплоснабжения. Комбинированная выработка теплоты и электроэнергии обеспечивает высокую эффективность использования топлива, позволяет сократить его расход.

В большинстве централизованных систем теплоснабжения максимальная температура горячей воды принимается 150°С. Температура пара в теплофикационных отборах турбины не превышает 127°С. Следовательно, при низких температурах наружного воздуха в теплофикационных теплообменных аппаратах подогреть воду до требуемого уровня нельзя. Для этого используют пиковые котлы, которые работают только при низких наружных температурах, т.е. снимают пиковую нагрузку. Так как отопительная нагрузка меняется с изменением наружной температуры, меняется и количество пара, отбираемого из турбины для теплоснабжения. Неотработанный пар проходит через цилиндры низкого давления турбины, отдает свою энергию и поступает в конденсатор, где поддерживается вакуум (давление 0,004-0,006 МПа), которому соответствуют низкие температуры конденсации 30-35°С, а охлаждающая вода имеет еще более низкую температуру, поэтому не используется для теплоснабжения. Таким образом, для теплоснабжения используется только часть пара, проходящая через отборы турбины, что снижает экономический эффект теплофикации. Однако расход топлива на выработку электроэнергии и теплоты для теплоснабжения в среднем за год сокращается примерно на 25-33%. Экономический эффект дает и использование в качестве источников теплоты крупных районных котельных установок (тепловых станций), имеющих высокий КПД.

Теплоноситель от источников теплоты транспортируется и распределяется между потребителями по развитым тепловым сетям. В результате тепловые сети охватывают все городские территории, а их сооружение вызывает наибольшие градостроительные и эксплуатационные трудности. В процессе эксплуатации они подвергаются коррозии и разрушениям. Аварийные повреждения приводят к отказам теплоснабжения, социальному и экономическим ущербам. В результате тепловые сети, являясь основным элементом крупных систем теплоснабжения, становятся и наиболее слабой составляющей их частью, что снижает экономический эффект от централизации теплоснабжения, ограничивает максимальную мощность систем. В зависимости от способа приготовления горячей воды централизованные системы теплоснабжения разделяют на закрытые и открытые. В закрытой системе циркулирующая в ней вода используется только как теплоноситель. Вода нагревается на источнике теплоты, несет свою энтальпию к потребителям и отдает ее на отопление, вентиляцию и горячее водоснабжение. Вода для горячего водоснабжения берегся из горячего водопровода и подогревается в поверхностных теплообменных аппаратах циркулирующим теплоносителем до требуемой температуры. Система закрыта по отношению к атмосферному воздуху. В открытых системах горячая вода, которую использует потребитель, отбирается из тепловой сети. Следовательно, горячая вода в системе используется не только как теплоноситель, но и непосредственно как вещество. Поэтому система теплоснабжения является частично циркуляционной, а частично прямоточной. Вода горячего водоснабжения приготовляется на источнике теплоты, прямоточно движется к потребителям и изливается через водоразборные краны в атмосферу.

Для крупных городов централизация теплоснабжения - перспективное направление. Централизованные системы, особенно теплофикационные, расходуют меньше топлива. Сокращение и укрупнение источников теплоты улучшают условия для градостроительства и экологию крупных городов. Меньшее количество источников теплоты позволяет резко сократить число дымовых труб, через которые в окружающую среду выбрасываются продукты сгорания. Исключается необходимость создания множества мелких топливных складов для хранения твердого топлива, откуда при децентрализованных системах теплоснабжения приходится развозить топливо, а из разбросанных по всему городу небольших котельных увозить золу и шлаки. Кроме того, при централизации источников теплоты легче очищать дымовые газы от токсичных компонентов.

Глава 12. Системы теплоснабжения

Основные понятия процесса теплоснабжения

Система теплоснабжения - совокупность взаимосвязанных энергоустановок, осуществляющих теплоснабжение района, города или предприятия. Система теплоснабжения – это сложная, технологически увязанная цепочка операций, состоящая из процессов производства, передачи и потребления тепловой энергии. Основные задачи функционирования этой системы – качественное и бесперебойное теплоснабжение потребителей. При этом, в грамотно спроектированных, налаженных системах, соотношение эффективность/качество должно ответствовать наивысшим стандартам.

Системой теплоснабжения называется комплекс устройств по выработке, транспорту и использованию теплоты. Снабжение теплотой потребителей (систем отопления, вентиляции, горячего водоснабжения и технологических процессов) состоит из трех взаимосвязанных процессов: сообщения теплоты теплоносителю, транспорта теплоносителя и использования теплового потенциала теплоносителя.

Необходимость создания систем теплоснабжения обусловлена следующими основными причинами: суровыми климатическими условиями основных районов страны, когда в течение 200-360 дней в году необходимо отопление жилых, общественных и производственных зданий; невозможностью осуществления многих технологических процессов без затрат теплоты, например, производство электроэнергии, варка и сушка материалов, стирка белья и др.; необходимостью удовлетворения санитарно-гигиенических нужд населения в горячей воде для мытья посуды, уборки помещений и других процессов.

Системы теплоснабжения классифицируются по мощности и виду источника теплоты; виду теплоносителя; способам и схемам присоединения, количеству трубопроводов и другим признакам.

Различают централизованные и местные системы теплоснабжения. Системы местного теплоснабжения обслуживают часть или все здание на базе печного отопления или домовой котельной установки. Централизованные системы теплоснабжения - один или несколько районов города. Поэтому они включают в себя источники теплоснабжения (котельные, ТЭЦ), тепловые сети, тепловые пункты и системы отопления, вентиляции и горячего водоснабжения зданий



По виду потребителя системы теплоснабжения можно разделить на промышленные, промышленно-отопительные и отопительные. В промышленных системах теплоснабжения главной составляющей тепловой нагрузки является расход теплоты на технологические нужды, в отопительных системах – коммунально-бытовые нагрузки жилых и общественных зданий, а в промышленно - отопительных системах теплоту от одного источника получают как промышленные предприятия, так и жилищно-коммунальный сектор города.

По мощности системы теплоснабжения характеризуются дальностью передачи теплоты и числом потребителей.

Местные системы теплоснабжения - это системы, в которых три основных звена (источник тепла, сети и потребители) объединены и находятся в одном или смежных помещениях. При этом получение теплоты и передача ее воздуху помещений объединены в одном устройстве и расположены в отапливаемых помещениях (печи). Централизованные системы – это системы, в которых от одного источника теплоты подается теплота для многих помещений. По виду источника теплоты системы централизованного теплоснабжения разделяют на районное теплоснабжение и теплофикацию. При системе районного теплоснабжения источником теплоты служит районная котельная, теплофикации - ТЭЦ. Теплоноситель получает теплоту в районной котельной (или ТЭЦ) и по наружным трубопроводам, которые носят название тепловых сетей, поступает в системы отопления, вентиляции промышленных, общественных и жилых зданий. В нагревательных приборах, расположенных внутри зданий, теплоноситель отдает часть аккумулированной в нем теплоты и отводится по специальным трубопроводам обратно к источнику теплоты.

Централизованные системы теплоснабжения. В зависимости от степени централизации системы централизованного теплоснабжения (ЦТС) можно разделить на четыре группы:

Групповое теплоснабжение различается на: районное (теплоснабжение городского района); городское (теплоснабжение города); межгородское (теплоснабжение нескольких городов).

Процесс централизованного теплоснабжения состоит из трех операций – подготовка теплоносителя, транспорт теплоносителя и использование теплоносителя. Подготовка теплоносителя осуществляется в системах водоподготовки ТЭЦ и котельных. Транспорт теплоносителя осуществляется по тепловым сетям. Использование теплоносителя осуществляется на теплоиспользующих установках потребителей. Комплекс установок, предназначенных для подготовки, транспорта и использования теплоносителя называется системой централизованного теплоснабжения.

Различают две основные категории потребления тепла:

Для создания комфортных условий труда и быта (коммунально-бытовая нагрузка). Сюда относят потребление воды на отопление, вентиляцию, горячее водоснабжение (ГВС), кондиционирование;

Для выпуска продукции заданного качества (технологическая нагрузка).

По уровню температуры тепло подразделяется на:

Низкопотенциальное, с температурой до 150 0 С;

Среднепотенциальное, с температурой от 150 0 С до 400 0 С;

Высокопотенциальное, с температурой выше 400 0 С.

Коммунально-бытовая нагрузка относится к низкопотенциальным процессам. Максимальная температура в тепловых сетях не превышает 150 0 С (в прямом трубопроводе), минимальная – 70 0 С (в обратном). Для покрытия технологической нагрузки, как правило, применяется водяной пар с давлением до 1,4 МПа. В качестве источников тепла применяются теплоподготовительные установки ТЭЦ и котельных. На ТЭЦ осуществляется комбинированная выработка тепла и электроэнергии на основе теплофикационного цикла. Раздельная выработка тепла и электроэнергии осуществляется в котельных и на конденсационных электростанциях. При комбинированной выработке суммарный расход топлива ниже, чем при раздельной.

Комплекс оборудования источника теплоснабжения, тепловых сетей и абонентских установок называется системой централизованного теплоснабжения. Системы теплоснабжения классифицируются по типу источника теплоты (или способу приготовления теплоты), роду теплоносителя, способу подачи воды на горячее водоснабжение, числу трубопроводов тепловой сети, способу обеспечения потребителей, степени централизации.

По типу источника теплоты различают три вида теплоснабжения:

Централизованное теплоснабжение от ТЭЦ, называемое теплофикацией;

Централизованное теплоснабжение от районных или промышленных котельных;

Децентрализованное теплоснабжение от местных котельных или индивидуальных отопительных агрегатов.

По сравнению с централизованным теплоснабжением от котельных теплофикация имеет ряд преимуществ, которые выражаются в экономии топлива за счет комбинированной выработки тепловой и электрической энергии на ТЭЦ; в возможности широкого использования местного низкосортного топлива, сжигание которого в котельных затруднительно; в улучшении санитарных условий и чистоты воздушного бассейна городов и промышленных районов благодаря концентрации сжигания топлива в небольшом количестве пунктов, размещенных, как правило, на значительном расстоянии от жилых кварталов, и более рациональному использованию современных методов очистки дымовых газов от вредных примесей.

Породу теплоносителя системы теплоснабжения разделяются на водяные и паровые. Паровые системы распространены в основном на промышленных предприятиях, а водяные системы применяются для теплоснабжения жилищно-коммунального хозяйства и некоторых производственных потребителей. Объясняется это рядом преимуществ воды как теплоносителя по сравнению с паром: возможностью центрального качественного регулирования тепловой нагрузки, меньшими энергетическими потерями при транспортировке и большей дальностью теплоснабжения, отсутствием потерь конденсата греющего пара, большей комбинированной выработкой энергии на ТЭЦ, повышенной аккумулирующей способностью.

По способу подачи воды на горячее водоснабжение водяные системы делятся на закрытые и открытые.

В закрытых системах сетевая вода используется только как теплоноситель и из системы не отбирается. В местные установки горячего водоснабжения поступает вода из питьевого водопровода, нагретая в специальных водо-водяных подогревателях за счет теплоты сетевой воды.

В открытых системах сетевая вода непосредственно поступает в местные установки горячего водоснабжения. При этом не требуются дополнительные теплообменники, что значительно упрощает и удешевляет устройство абонентского ввода. Однако потери воды в открытой системе резко возрастают (от 0,5-1 % до 20- 40 % общего расхода воды в системе) и состав воды, подаваемой потребителям, ухудшается из-за присутствия в ней продуктов коррозии и отсутствия биологической обработки.

Достоинства закрытых систем теплоснабжения заключаются в том, что их применение обеспечивает стабильное качество горячей воды, поступающей в установки горячего водоснабжения, одинаковое с качеством водопроводной воды; гидравлическую изолированность воды, поступающей в установки горячего водоснабжения, от воды, циркулирующей в тепловой сети; простоту контроля герметичности системы по величине подпитки.

Основными недостатками закрытых систем являются усложнение и удорожание оборудования и эксплуатации абонентских вводов из-за установки водо-водяных подогревателей и коррозии местных установок горячего водоснабжения вследствие использования недеаэрированной воды.

Основные достоинства открытых систем теплоснабжения заключаются в возможности максимального использования низкопотенциальных источников теплоты для подогрева большого количества подпиточной воды. Поскольку в закрытых системах подпитка не превышает 1 % расхода сетевой воды, возможность утилизации теплоты сбросной и продувочной воды на ТЭЦ с закрытой системой значительно ниже, чем в открытых системах. Кроме того, в местные установки горячего водоснабжения в открытых системах поступает деаэрированная вода, поэтому они меньше подвержены коррозии и более долговечны.

Недостатками открытых систем являются: необходимость устройства на ТЭЦ мощной водоподготовки для подпитки тепловой сети, что удорожает станционную водоподготовку, особенно при повышенной жесткости исходной сырой воды; усложнение и увеличение объема санитарного контроля за системой; усложнение контроля герметичности системы (поскольку величина подпитки не характеризует плотность системы); нестабильность гидравлического режима сети.

По числу трубопроводов различают одно-, двух- и многотрубные системы. Причем для открытой системы минимальное число трубопроводов - один, а для закрытой - два. Самой простой для транспортировки теплоты на большие расстояния является однотрубная открытая система теплоснабжения. Однако область применения таких систем ограничена в связи с тем, что ее реализация возможна лишь при условии равенства расхода воды, необходимого для удовлетворения отопительно-вентиляционной нагрузки, расходу воды для горячего водоснабжения потребителей данного района. Для большинства районов нашей страны расход воды на горячее водоснабжение значительно меньше (в 3 - 4 раза) расхода сетевой воды на отопление и вентиляцию, поэтому в теплоснабжении городов преимущественное распространение получили двухтрубные системы. В двухтрубной системе тепловая сеть состоит из двух линий: подающей и обратной.

По способу обеспечения потребителей теплотой различают одноступенчатые и многоступенчатые системы теплоснабжения. В одноступенчатых системах потребители теплоты присоединяются к тепловым сетям непосредственно.

В многоступенчатых системах между источником теплоты и потребителями размещаются центральные тепловые пункты или подстанции, в которых параметры теплоносителя изменяются в зависимости от расходования теплоты местными потребителями. На центральных тепловых пунктах размещаются центральная подогревательная установка горячего водоснабжения, центральная смесительная установка сетевой воды, подкачивающие насосы холодной водопроводной воды, авторегулирующие и контрольно-измерительные приборы. Применение многоступенчатых систем с центральными тепловыми пунктами позволяет снизить начальные затраты на сооружение подогревательной установки горячего водоснабжения, насосных установок и авторегулирующих устройств благодаря увеличению их единичной мощности и сокращению числа элементов оборудования.

Оптимальная расчетная производительность центральных тепловых пунктов зависит от планировки района, режима работы потребителей и определяется на основе технико-экономических расчетов.

Различают два вида теплоснабжения - централизованное и децентрализованное. При децентрализованном теплоснабжении источник и потребитель тепла находятся близко друг от друга. Тепловая сеть отсутствует. Децентрализованное теплоснабжение разделяют на местное (теплоснабжение от местной котельной) и индивидуальное (печное, теплоснабжение от котлов в квартирах).

В зависимости от степени централизации системы централизованного теплоснабжения (ЦТС) можно разделить на четыре группы:

1. групповое теплоснабжение (ТС) группы зданий;

2. районное - ТС городского района;

3. городское - ТС города;

4. межгородское - ТС нескольких городов.

Процесс ЦТС состоит из трех операций - подготовка теплоносителя (ТН), транспорт ТН и использование ТН.

Подготовка ТН осуществляется на теплоприготовительных установках ТЭЦ и котельных. Транспорт ТН осуществляется по тепловым сетям. Использование ТН осуществляется на теплоиспользующих установках потребителей.

Комплекс установок, предназначенных для подготовки, транспорта и использования теплоносителя называется системой централизованного теплоснабжения.

Различают две основные категории потребления тепла:

Для создания комфортных условий труда и быта (коммунально-бытовая нагрузка). Сюда относят потребление воды на отопление, вентиляцию, горячее водоснабжение (ГВС), кондиционирование;

Для выпуска продукции заданного качества (технологическая нагрузка).

По уровню температуры тепло подразделяется на :

Низкопотенциальное, с температурой до 150 0 С;

Среднепотенциальное, с температурой от 150 0 С до 400 0 С;

Высокопотенциальное, с температурой выше 400 0 С.

относится к низкопотенциальным процессам. Максимальная температура в тепловых сетях не превышает 150 0 С (в прямом трубопроводе), минимальная - 70 0 С (в обратном). Для покрытия технологической нагрузки как правило применяется водяной пар с давлением до 1,4 МПа.

В качестве источников тепла применяются теплоподготовительные установки ТЭЦ и котельных. На ТЭЦ осуществляется комбинированная выработка тепла и электроэнергии на основе теплофикационного цикла. Раздельная выработка тепла и электроэнергии осуществляется в котельных и на конденсационных электростанциях. При комбинированной выработке суммарный расход топлива ниже, чем при раздельной.

Весь комплекс оборудования ис-точника теплоснабжения, тепловых сетей и абонентских установок на-зывается системой централи-зованного теплоснабже-ния.

Системы теплоснабжения клас-сифицируются по типу источника теплоты (или способу приготовле-ния теплоты), роду теплоносителя, способу подачи воды на горячее водоснабжение, числу трубопрово-дов тепловой сети, способу обеспе-чения потребителей, степени цент-рализации.


По типу источника теплоты раз-личают три вида теплоснабжения:

Централизованное теплоснабже-ние от ТЭЦ, называемое тепло-фикацией;

Централизованное теплоснабже-ние от районных или промышлен-ных котельных;

Децентрализованное теплоснаб-жение от местных котельных или индивидуальных отопительных аг-регатов.

По сравнению с централизован-ным теплоснабжением от котель-ных теплофикация имеет ряд пре-имуществ, которые выражаются в экономии топлива за счет комбини-рованной выработки тепловой и электрической энергии на ТЭЦ; в возможности широкого использова-ния местного низкосортного топли-ва, сжигание которого в котельных затруднительно; в улучшении сани-тарных условий и чистоты воздуш-ного бассейна городов и промыш-ленных районов благодаря концент-рации сжигания топлива в неболь-шом количестве пунктов, размещен-ных, как правило, на значительном расстоянии от жилых кварталов, и более рациональному использова-нию современных методов очистки дымовых газов от вредных при-месей.

По роду теплоносителя системы теплоснабжения разделяются на водяные и паровые. Паровые системы распространены в основ-ном на промышленных предприя-тиях, а водяные системы применя-ются для теплоснабжения жилищ-но-коммунального хозяйства и не-которых производственных потреби-телей. Объясняется это рядом пре-имуществ воды как теплоносителя по сравнению с паром: возмож-ностью центрального качественного регулирования тепловой нагрузки, меньшими энергетическими потеря-ми при транспортировке и большей дальностью теплоснабжения, отсут-ствием потерь конденсата греюще-го пара, большей комбинированной выработкой энергии на ТЭЦ, повы-шенной аккумулирующей способ-ностью.

По способу подачи воды на го-рячее водоснабжение водяные си-стемы делятся на закрытые и открытые.

В закрытых системах се-тевая вода используется только как теплоноситель и из системы не отбирается. В местные установки горячего водоснабжения поступает вода из питьевого водопровода, на-гретая в специальных водоводяных подогревателях за счет теплоты се-тевой воды.

В открытых системах се-тевая вода непосредственно посту-пает в местные установки горя-чего водоснабжения. При этом не требуются дополнительные тепло-обменники, что значительно упро-щает и удешевляет устройство або-нентского ввода. Однако потери воды в открытой системе резко возрастают (от 0,5—1 % до 20— 40 % общего расхода воды в систе-ме) и состав воды, подаваемой по-требителям, ухудшается из-за при-сутствия в ней продуктов коррозии и отсутствия биологической обра-ботки.

Достоинства закрытых систем теплоснабжения заключаются в том, что их применение обеспечи-вает стабильное качество горячей воды, поступающей в установки го-рячего водоснабжения, одинаковое с качеством водопроводной воды; гидравлическую изолированность воды, поступающей в установки го-рячего водоснабжения, от воды, циркулирующей в тепловой сети; простоту контроля герметичности системы по величине подпитки.

Основными недостатками закры-тых систем являются усложнение и удорожание оборудования и экс-плуатации абонентских вводов из-за установки водо-водяных подо-гревателей и коррозии местных установок горячего водоснабжения вследствие использования недеаэрированной воды.

Основные достоинства открытых систем теплоснабжения заключают-ся в возможности максимального использования низкопотенциальных источников теплоты для подогрева большого количества подпиточной воды. Поскольку в закрытых систе-мах подпитка не превышает 1 % расхода сетевой воды, возможность утилизации теплоты сбросной и продувочной воды на ТЭЦ с закры-той системой значительно ниже, чем в открытых системах. Кроме того, в местные установки горячего водоснабжения в открытых систе-мах поступает деаэрированная во-да, поэтому они меньше подвер-жены коррозии и более долго-вечны.

Недостатками открытых систем являются : необходимость устройст-ва на ТЭЦ мощной водоподготовки для подпитки тепловой сети, что удорожает станционную водоподготовку, особенно при повышенной жесткости исходной сырой воды; усложнение и увеличение объема санитарного контроля за системой; усложнение контроля герметичности системы (поскольку величина под-питки не характеризует плотность системы); нестабильность гидравли-ческого режима сети.

По числу трубопроводов разли-чают одно-, двух- и многотрубные системы. Причем для открытой си-стемы минимальное число трубо-проводов — один, а для закры-той— два. Самой простой и перс-пективной для транспортировки теплоты на большие расстояния яв-ляется однотрубная открытая си-стема теплоснабжения. Однако об-ласть применения таких систем ог-раничена в связи с тем, что ее реа-лизация возможна лишь при усло-вии равенства расхода воды, необ-ходимого для удовлетворения отопительно-вентиляционной нагруз-ки, расходу веды для горячего водоснабжения потребителей дан-ного района. Для большинства районов нашей страны расход воды на горячее водоснабжение значи-тельно меньше (в 3—4 раза) рас-хода сетевой воды на отопление и вентиляцию, поэтому в теплоснаб-жении городов преимущественное распространение получили двух-трубные системы. В двухтрубной системе тепловая сеть состоит из двух линий: подающей и обратной.

По способу обеспечения потре-бителей теплотой различают одно-
ступенчатые и многоступенчатые системы теплоснабжения. В одно-
ступенчатых системах потребители теплоты присоединяются к тепловым сетям непосредственно. Узлы присоединения потребителей к сети
называются абонентскими вводами или местными теп-ловыми пунктами (МТП). На абонентском вводе каждого здания устанавливаются подогреватели горячего водоснабжения, элеваторы, насосы, контрольно-измерительные приборы и регулирующая армату-ра для изменения параметров теп-лоносителя в местных системах по-требителей.

В многоступенчатых системах между источником теплоты и по-требителями размещаются цент-ральные тепловые пункты или под-станции (ЦТП), в которых пара-метры теплоносителя изменяются в зависимости от расходования теп-лоты местными потребителями. На ЦТП размещаются центральная по-догревательная установка горячего водоснабжения, центральная смеси-тельная установка сетевой воды, подкачивающие насосы холодной водопроводной воды, авторегулирующие и контрольно-измеритель-ные приборы. Применение много-ступенчатых систем с ЦТП позво-ляет снизить начальные затраты на сооружение подогревательной ус-тановки горячего водоснабжения, насосных установок и авторегулирующйх устройств благодаря уве-личению их единичной мощности и сокращению числа элементов обо-рудования.

Оптимальная расчетная произ-водительность ЦТП зависит от планировки района, режима работы потребителей и определяется на ос-нове технико-экономических расче-тов.

По степени централизации теп-лоснабжение можно разделить на групповое — теплоснабжение группы зданий, районные - теплоснабжение нескольких групп зданий, городское - теплоснабжение нескольких районов, межгородское - теплоснабжение нескольких городов.

Устройство и конструкции тепловых сетей.

Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки; изоляционная конструкция, воспринимающая вес трубопровода и усилия, возникающая при его эксплуатации.

Трубы являются ответственными элементами трубопроводов и должны отвечать следующим требованием:

Достаточная прочность и герметичность при максимальных значениях давления и температуры теплоносителя,

Низкий коэффициент температурных деформации,

Обеспечивающий небольшие термические напряжение при переменном тепловом режиме тепловой сети,

Малая шероховатость внутренней поверхности,

Антикорозинная стойкость,

Высокая термическая сопротивление стенок трубы,

Способствующее сохранению теплоты и температуры теплоносителя,

Неизменность свойств материала при длительном воздействий высоких температур и давлений, простота монтажа,

Надежность соединения труб и др.

Имеющейся стальные трубы не удовлетворяют в полной мере всем предъявлемым требованиям, однако их механические свойства, простота, надежность и герметичность соединений (сваркой) обеспечили им преимущественное применение в тепловых сетях.

Трубы для тепловых сетей изготавливаются в основном из сталей марок Ст2сп, Ст3сп, 10, 20, 10Г2С1, 15ГС, 16ГС.

В тепловых сетях применяются бесшовные горячекатаные и электросварные. Бесшовные горячекатаные трубы выпускаются с наружными диаметрами 32 - 426мм. Бесшовные горячекатаные электросварные трубы используется при всех способах прокладки сетей. Электросварные трубы используются при всех способах прокладки сетей. Электросварные со спиральным швом рекомендуются к использованию при канальных и надземных прокладках сетей.

Опоры . При сооружений тепловых сетей применяются опоры двух типов: свободные и неподвижные. Свободные опоры воспринимают вес теплопровода и обеспечивают его свободное перемещение при температурных деформациях. Неподвижные опоры предназначены для закрепления трубопровода в характерных точках сети и воспринимают усилия, возникающие в месте фиксации как в радиальном, так и в осевом направлениях под действием веса, температурных деформаций и внутреннего давления.

Компенсаторы . Компенсация температурных деформации в трубопроводах производится специальными устройствами, называемыми компенсаторами. По принципу действия они разделяются на две группы:

Компенсаторы радиальные или гибкие, воспринимающие удлинения теплопровода изгибом или кручением криволинейных участков труб или изгибом специальных эластичных вставок различной формы;

Компенсаторы осевые, в которых удлинение воспринимаются телескопическим перемещением труб или сжатием пружинных вставок.

Наиболее широкое применение в практике имеют гибкие компенсаторы различной конфигурации, выполненные из самого трубопровода (П - и -S-образные, лирообразные со складками и без них и т.д.). Простота устройства, надежность, отсутствия необходимости в обслуживании, разгруженность неподвижных опор - достоинство этих компенсаторов.

К недостаткам гибких компенсаторов относятся: повышенное гидравлическое сопротивление, увеличенный расход труб, поперечное перемещение деформируемых участках, требующее увеличение ширины непроходных каналов и затрудняющее применение засыпных изоляций, бесканальных трубопроводов, а так же большие габариты, затрудняющие их применение в городах при насыщенности трассы городскими подземными коммуникациями.

Осевые компенсаторы выполняются скользящего типа (сальниковые) и упругими (линзовые компенсаторы).

Сальниковый компенсатор изготавливается из стандартных труб и состоит из корпуса, стакана и уплотнение. При удлинений трубопровода стакан вдвигается в полость корпуса. Герметичность скользящего соединения корпуса и стакана создается сальниковой набивкой, которая выполняется из прографиченного асбестового шнура, пропитанного маслом. Со временем набивка истирается и теряет упругость, поэтому требуется периодическая подтяжка сальника и замена набивки. От этого недостатка свободны линзовые компенсаторы, изготавливаемые из листовой стали. Линзовые компенсаторы сварного типа находят основное применение на трубопроводах низкого давления (до 0,4-0,5 МПа).

Конструктивное выполнение элементов трубопровода зависит так же от способа его прокладки, который выбирается на основании технико-экономического сравнения возможных вариантов.

Основное назначение любой системы теплоснабжения состоит в обеспечении потребителей необходимым количеством теплоты требуемого качества (т.е. теплоносителем требуемых параметров).

В зависимости от размещения источника теплоты по отношению к потребителям системы теплоснабжения разделяются на децентрализованные и централизованные.

Децентрализованные системы

В децентрализованных системах источник теплоты и теплоприемники потребителей либо совмещены в одном агрегате, либо размещены столь близко, что передача теплоты от источника до теплоприемников может осуществляться практически без промежуточного звена – тепловой сети.

Системы децентрализованного теплоснабжения разделяются на индивидуальные и местные.

В индивидуальных системах теплоснабжение каждого помещения (участка цеха, комнаты, квартиры) обеспечивается от отдельного источника. К таким системам, в частности, относятся печное и поквартирное отопление. В местных системах теплоснабжение каждого здания обеспечивается от отдельного источника теплоты, обычно от местной или индивидуальной котельной. К этой системе, в частности, относится так называемое центральное отопление зданий.

Централизованные системы

В системах централизованного теплоснабжения источник теплоты и теплоприемники потребителей размещены раздельно, часто на значительном расстоянии, поэтому теплота от источника до потребителей передается по тепловым сетям.

В зависимости от степени централизации системы централизованного теплоснабжения можно разделить на следующие четыре группы:

  • групповое – теплоснабжение от одного источника группы зданий;
  • районное – теплоснабжение от одного источника нескольких групп зданий (района);
  • городское – теплоснабжение от одного источника нескольких районов;
  • межгородское – теплоснабжение от одного источника нескольких городов.

Процесс централизованного теплоснабжения состоит из трех последовательных операций: подготовки теплоносителя, транспортировки теплоносителя и использования теплоносителя.

Транспортируется теплоноситель по тепловым сетям. Используется теплоноситель в теплоприемниках потребителей. Комплекс установок, предназначенных для подготовки, транспортировки и использования теплоносителя, составляет систему централизованного теплоснабжения. Для транспорта теплоты применяются, как правило, два теплоносителя: вода и водяной пар. Для удовлетворения сезонной нагрузки и нагрузки горячего водоснабжения в качестве теплоносителя используется обычно вода, для промышленной технологической нагрузки – пар.

Выбор системы теплоснабжения объекта производится на основании утвержденной в установленном порядке схемы теплоснабжения.

Водяные системы

Водяные системы теплоснабжения применяются двух типов: закрытые (замкнутые) и открытые (разомкнутые). В закрытых системах сетевая вода, циркулирующая в тепловой сети, используется только как теплоноситель, но из сети не отбирается.

В открытых системах сетевая вода частично (редко полностью) разбирается у абонентов для горячего водоснабжения.

В зависимости от числа трубопроводов, используемых для теплоснабжения данной группы потребителей, водяные системы делятся на одно-, двух-, трех- и многотрубные. Минимальное число трубопроводов для открытой системы один, а для закрытой системы - два.

Наиболее простой и перспективной для транспорта на большие расстояния является однотрубная бессливная система теплоснабжения. Ее можно применить в том случае, когда обеспечивается равенство расходов сетевой воды, требуемых для удовлетворения отопительно-вентиляционной нагрузки и для горячего водоснабжения абонентов данного города или района.

Для теплоснабжения городов в большинстве случаев применяются двухтрубные водяные системы, в которых тепловая сеть состоит из двух трубопроводов: подающего и обратного. По подающему трубопроводу горячая вода подводится от станции к абонентам, по обратному трубопроводу охлажденная вода возвращается на станцию.

Преимущественное применение в городах двухтрубных систем объясняется тем, что эти системы по сравнению с многотрубными требуют меньших начальных вложений и дешевле в эксплуатации. Двухтрубные системы применимы в тех случаях, когда всем потребителям района требуется теплота примерно одного потенциала. Такие условия обычно имеют место в городах, где вся тепловая нагрузка (отопление, вентиляция и горячее водоснабжение) может быть удовлетворена в основном теплотой низкого потенциала.

В промышленных районах, где имеется технологическая тепловая нагрузка повышенного потенциала, могут применяться трехтрубные системы, в которых два трубопровода используются как подающие, а третий трубопровод является обратным. К каждому подающему трубопроводу присоединяются однородные по потенциалу и режиму тепловые нагрузки. В промышленных районах обычно к одному подающему.

Число параллельных трубопроводов в закрытой системе должно быть не меньше двух, так как после отдачи теплоты в абонентских установках теплоноситель должен быть возвращен на станцию. В зависимости от характера тепловых нагрузок абонента и режима работы тепловой сети выбираются схемы присоединения абонентских установок к тепловой сети.

В закрытых системах теплоснабжения установки горячего водоснабжения присоединяются к тепловой сети только через водо-водяные подогреватели, т.е. по независимой схеме. При зависимых схемах присоединения давление в абонентской установке зависит от давления в тепловой сети. При независимых схемах присоединения давление в местной системе не зависит от давления в тепловой сети.

Оборудование абонентского ввода при зависимой схеме присоединения проще и дешевле, чем при независимой, при этом может быть получен несколько больший перепад температур сетевой воды в абонентской установке. Увеличение перепада температур воды уменьшает расход теплоносителя в сети, что может привести к снижению диаметров сети и экономии на начальной стоимости тепловой сети и на эксплуатационных расходах.

Основным недостатком зависимой схемы присоединения является жесткая гидравлическая связь тепловой сети с нагревательными приборами абонентских установок, имеющими, как правило, пониженную механическую прочность, что ограничивает пределы допускаемых режимов работы системы централизованного теплоснабжения. Так, в широко применявшихся в отопительной технике чугунных нагревательных приборах (радиаторах) допустимое давление не превышает 0.6 МПа; превышение указанного предела может привести к авариям в отопительных установках. Это существенно снижает надежность и усложняет эксплуатацию систем теплоснабжения крупных городов, Так как при большой протяженности тепловых сетей и большом числе присоединенных абонентских установок с разнородной тепловой нагрузкой расходы воды в сети и связанные с ними потери давления могут изменяться в широких пределах. При этом уровень давлений в сети может превысить предел, допустимый для абонентских установок.

В тех случаях, когда разность между допустимым давлением в теплопотребляющих приборах абонентов и расчетным давлением в тепловой сети невелика, даже небольшие повышения давления в тепловой сети, вызванные, например, аварийным отключением насоса на подстанции или непроизвольным перекрытием клапана в сети, могут привести к разрыву приборов в отопительных установках абонентов. Кроме того, при независимой схеме снижаются утечки сетевой воды и легче обнаружить возникающие в процессе эксплуатации повреждения в системе теплоснабжения. Поэтому по условиям надежности работы систем теплоснабжения крупных городов независимая схема присоединения более предпочтительна. В тех же случаях, когда давление в тепловой сети в статических условиях превышает допустимый уровень давлений в абонентских установках, применение независимой схемы присоединения является обязательным независимо от размеров системы централизованного теплоснабжения.

Непосредственный водоразбор сетевой воды у потребителей в закрытых системах теплоснабжения не допускается.

В открытых системах теплоснабжения подключение части потребителей горячего водоснабжения через водо-водяные теплообменники на тепловых пунктах абонентов (по закрытой системе) допускается как временное при условии обеспечения (сохранения) качества сетевой воды согласно требованиям действующих нормативных документов.

Паровые системы

Паровые системы сооружаются двух типов: с возвратом конденсата, без возврата конденсата. В практике промышленной теплофикации широко применяется однотрубная паровая система с возвратом конденсата. Пар из отбора турбины поступает в однотрубную паровую сеть и транспортируется по ней к тепловым потребителям. Конденсат возвращается от потребителей на станцию по конденсатопроводу. На случай остановки турбины или недостаточной мощности отбора предусмптривается резервная подача пара в сеть через редукционно-охладительную установку.

Схемы присоединений абонентских установок к паровой сети зависят от конструкции этих установок. Если пар может быть пущен непосредственно в установку абонента, то присоединение производится по зависимой схеме. Сбор конденсата от теплопотребляющих установок и возврат его к источнику теплоты имеют важное значение не только для надежности работы котельных установок современных теплоэлектроцентралей, но и для экономии теплоты и общей экономичности системы теплоснабжения в целом. Возврат конденсата особенно важен для ТЭЦ с высокими и сверхкритическими начальными параметрами (13 МПа и выше).

Дает следующее определение термина «теплоснабжение»:

Теплоснабжение - система обеспечения теплом зданий и сооружений, предназначенного для обеспечения теплового комфорта для находящихся в них людей или для возможности выполнения технологических норм.

Любая система теплоснабжения состоит из трех основных элементов:

  1. Теплоисточник . Это может быть ТЭЦ или котельная (при централизованной системе теплоснабжения), либо просто котел, расположенный в отдельном здании (местная система).
  2. Система транспортировки тепловой энергии (тепловые сети).
  3. Потребители тепла (радиаторы отопления (батареи) и калориферы).

Классификация

Системы теплоснабжения подразделяются на:

  • Централизованные
  • Местные (их еще называют децентрализованными).

Они могут быть водяными и паровыми. Последние используются в наши дни не часто.

Местные системы теплоснабжения

Здесь все просто. В местных системах источник тепловой энергии и ее потребитель находятся в одном здании или очень близко друг к другу. Например, в отдельном доме установлен котел. Нагретая в этом котле вода в последствии используется для удовлетворения нужд дома в отоплении и горячей воде.

Централизованные системы теплоснабжения

В централизованной системе теплоснабжения источником тепла служит или котельная, которая вырабатывает тепло для группы потребителей: квартал, район города или даже весь город.


При такой системе тепло транспортируется к потребителям по магистральным тепловым сетям. От магистральных сетей теплоноситель подается в центральные тепловые пункты (ЦТП) или индивидуальные тепловые пункты (ИТП). От ЦТП тепло уже по квартальным сетям поступает в здания и сооружения потребителей.

По способу подключения системы отопления системы теплоснабжения подразделяются на:

  • Зависимые системы — теплоноситель от источника тепловой энергии (ТЭЦ, котельная) поступает непосредственно к потребителю. При такой системе в схеме не предусмотрено наличие центральных или индивидуальных тепловых пунктов. Выражаясь простым языком, вода из тепловых сетей поступает напрямую в батареи.
  • Независимые системы — в этой системе присутствуют ЦТП и ИТП. Теплоноситель, циркулирующий по тепловым сетям, нагревает воду в теплообменнике (1й контур — красные и зеленые линии). Нагретая в теплообменнике вода циркулирует уже в системе отопления потребителей (2 контур — оранжевые и синие линии).

С помощью подпиточных насосов восполняются потери воды через неплотности и повреждения в системе и поддерживается давление в обратном трубопроводе.

По способу присоединения системы горячего водоснабжения системы теплоснабжения подразделяются на:

  • Закрытые. При такой системе вода из водопровода нагревается теплоносителем и поступает к потребителю. О ней я писал в статье .


  • Открытые. В открытой системе теплоснабжения вода для нужд ГВС отбирается непосредственно из тепловой сети. К примеру, зимой вы пользуетесь отоплением и горячей водой «из одной трубы». Для такой системы справедлив рисунок зависимой системы теплоснабжения.